|
|||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Выводы по лекцииКлеточная теория. Клетка – элементарная единица живой системы. Специфические функции в клетке распределены между органоидами – внутриклеточными структурами. Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством в своих главных структурных особенностях. Основные положения клеточной теории
В качестве подтверждения некоторых из приведенных выше положений клеточной теории назовем общие черты, характерные для животной и растительной клеток. Общие признаки растительной и животной клетки
Таблица: Отличительные признаки растительной и животной клетки
Значение теории: она доказывает единство происхождения всех живых организмов на Земле. Рисунок: Схема строения животной и растительной клеток Таблица: Клеточные органеллы, их строение и функции
Выводы по лекции
Вопросы для самоконтроля
Клеточные структуры: митохондрии, пластиды, органоиды движения, включения. Ядро Таблица 1.4.1. Клеточные органеллы, их строение и функции Органеллы Строение Функции Митохондрии Микроскопические органеллы, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты – кристы. В матриксе митохондрии (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК. Универсальная органелла является дыхательным и энергетическим центром. В процессе кислородного (окислительного) этапа в матриксе с помощью ферментов происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ на (кристах). Лейкопласты Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2–3 выроста. Форма – округлая. Бесцветны. Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется, и они преобразуются в хлоропласты. Образуются из пропластид. Хлоропласты Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин – тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты – хлорофилл и каротиноиды. В белково-липидном матриксе находятся собственные рибосомы, ДНК, РНК. Характерны для растительных клеток органеллы фотосинтеза, способные создавать из неорганических веществ (CO2 и H2O) при наличии световой энергии и пигмента хлорофилла органические вещества – углеводы и свободный кислород. Синтез собственных белков. Могут образовываться из пластид или лейкопластов, а осенью перейти в хлоропласты (красные и оранжевые плоды, красные и желтые листья). Хромопласты Микроскопические органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов, принимают форму кристаллов каратинондов, типичную для данного вида растения. Окраска красная, оранжевая, желтая. Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах отделяющихся от растений, содержатся кристаллические каротиноиды?– конечные продукты обмена. Клеточный центр Ультрамикроскопическая органелла немембранного строения. Состоит из двух центриолей. Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг другу. Принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках. Удваиваются и образуют клеточный центр. Клеточные включения (непостоянные структуры) Плотные в виде гранул включения, имеющие мембрану (например, вакуоли). Содержат запасные питательные вещества. Органоиды движения Реснички – многочисленные цитоплазмические выросты на поверхности мембраны. Удаление частичек пыли (реснитчатые эпителии верхних дыхательных путей), передвижение (одноклеточные организмы). Жгутики – единичные цитоплазматические выросты на поверхности клетки. Передвижение (сперматозоиды, зооспоры, одноклеточные организмы). Ложные ножки (псевдоподии) – амебовидные выступы цитоплазмы. Образуются у животных в разных местах цитоплазмы для захвата пищи, для передвижения. Миофибриллы – тонкие нити до 1 см. длиной и больше. Служат для сокращения мышечных волокон, вдоль которых они расположены. Цитоплазма, осуществляющая струйчатое и круговое движение. Перемещение органелл клетки по отношению к источнику света (при фотосинтезе), тепла, химического раздражителя. Рисунок 1.4.1. Схема состав и функции клеточных включений
Фагоцитоз – захват плазматической мембраной твёрдых частиц и втягивание их внутрь. Плазматическая мембрана образует впячивание в виде тонкого канальца, в который попадает жидкость с растворёнными в ней веществами. Этот способ называют пиноценозом. Ядро Все организмы, имеющие клеточное строение без оформленного ядра называются прокариотами. Все организмы, имеющие клеточное строение с ядром называются эукариотами. Таблица 1.4.2. Ядерные структуры, их строение и функции Структуры Строение Функции Ядерная оболочка Двухслойная пористая. Наружная мембрана переходит в мембраны ЭС. Свойственна всем клеткам животных и растений, кроме бактерий и сине-зеленых, которые не имеют ядра. Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК и субъединицы рибосом) и из цитоплазмы в ядро (белки, жир, углеводы, АТФ, вода, ионы). Хромосомы (хроматин) В интерфазной клетке хроматин имеет вид мелкозернистых нитевидных структур, состоящих из молекул ДНК и белковой обкладки. В делящихся клетках хроматиновые структуры спирализуются и образуют хромосомы. Хромосома состоит из двух хроматид, и после деления ядра становится однохроматидной. К началу следующего деления у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. У ядрышковых хромосом есть вторичная перетяжка. Хроматиновые структуры – носители ДНК. ДНК состоит из участков – генов, несущих наследственную информацию и передающихся от предков к потомкам через половые клетки. Совокупность хромосом, а, следовательно, и генов половых клеток родителей передается детям, что обеспечивает устойчивость признаков, характерных для данной популяции, вида. В хромосомах синтезируется ДНК, РНК, что служит необходимым фактором передачи наследственной информации при делении клеток и построении молекул белка. Ядрышко Шаровидное тело, напоминающее клубок нити. Состоит из белка и РНК. Образуется на вторичной перетяжке ядрышковой хромосомы. При делении клеток распадается. Формирование половинок рибосом из рРНК и белка. Половинки (субъединицы) рибосом через поры в ядерной оболочке выходят в цитоплазму и объединяются в рибосомы. Ядерный сок (кариолимфа) Полужидкое вещество, представляющее коллоидный раствор белков, нуклеиновых кислот, углеводов, минеральных солей. Реакция кислая. Участвует в транспорте веществ и ядерных структур, заполняет пространство между ядерными структурами; во время деления клеток смешивается с цитоплазмой. Рисунок 1.4.2. Схема строения ядра клетки
Функции ядра клетки: • регуляция процессов обмена веществ в клетке; • хранение наследственной информации и ее воспроизводство; • синтез РНК; • сборка рибосом. Выводы по лекции 1. В митохондриях происходит расщепление органических веществ с освобождением энергии, которая идет на синтез АТФ. 2. Важную роль играют пластиды в обеспечении процессов жизнедеятельности растительной клетки. 3. К органоидам движения относят клеточные структуры: реснички, жгутики, миофибриллы. 4. Все клеточные организмы делятся на прокариоты (безъядерные) и эукариоты (с ядром). 5. Ядро представляет собой структурный и функциональный центр, координирующий ее обмен веществ, руководящий процессами самовоспроизведения и хранения наследственной информации. Вопросы для самоконтроля 1. Почему митохондрии образно называют "силовыми станциями" клетки? 2. Какие структуры клетки способствуют ее движению? 3. Что относится к клеточным включениям? Какова их роль? 4. Каковы функции ядра в клетке? Самостоятельная работа Темы рефератов, докладов: 1. Исторический очерк. "Изучение строения клетки". 2. Выдающийся биолог Р. Гук. 3. Выдающийся биолог А. Левенгук. 4. Выдающиеся биологи Т. Шванн и М. Шлейден. 5. Выдающийся биолог Р. Вирхов.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |