АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

НЕЛИНЕЙНАЯ РЕГРЕССИЯ. ВИДЫ МОДЕЛЕЙ

Читайте также:
  1. Вибір моделей макроекономічної політики в Україні.
  2. Виды нелинейных регрессионных моделей, расчет их параметров
  3. Виды эконометрических моделей
  4. Виды эконометрических моделей
  5. Влияние национально-исторических факторов на развитие менеджмента. Разнообразие моделей менеджмента: американский, японский, европейский и др.
  6. Г) побудові моделей економічних явищ та процесів з метою вибору оптимального варіанту управління підприємством.
  7. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
  8. Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
  9. Задачи экономического анализа, решаемые на основе регрессионных эконометрических моделей
  10. Извлечение параметров моделей.
  11. Интерпретация моделей: краткосрочный, промежуточный и долгосрочный мультипликаторы.
  12. Интерпретация параметров моделей с распределенным лагом

Если между экономическими явлениями существуют нели­нейные соотношения, то они выражаются с помощью соответ­ствующих нелинейных функций: например, равносторонней ги­перболы , параболы второй степени и д.р.

Различают два класса нелинейных регрессий:

• регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым па­раметрам;

• регрессии, нелинейные по оцениваемым параметрам.
Примером нелинейной регрессии по включаемым в нее объ­ясняющим переменным могут служить следующие функции:

полиномы разных степеней

равносторонняя гипербола

К нелинейным регрессиям по оцениваемым параметрам от­носятся функции:

степенная

показательная

экспоненциальная

ПРИМЕНЕНИЕ МНК К МОДЕЛЯМ НЕЛИНЕЙНЫМ ОТНОСИТЕЛЬНО ВКЛЮЧАЕМЫХ ПЕРЕМЕННЫХ И ОЦЕНИВАЕМЫХ ПАРАМЕТРОВ.

Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяет­ся, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в парабо­ле второй степени y=a0+a1x+a2x2+ε заменяя переменные x=x1,x2=x2, получим двухфакторное урав­нение линейной регрессии: у=а0+а1х1+а2х2+ ε

Парабола второй степени целесообразна к применению, если для определенного интервала значений фактора меняется харак­тер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую. В этом случае определяется значение фактора, при котором достигается максимальное (или минимальное), значение результативного признака: приравнива­ем к нулю первую производную параболы второй степени: , т.е. b+2cx=0 и x=-b/2c

Применение МНК для оценки параметров параболы второй степени приводит к следующей системе нормальных уравнений:

Решение ее возможно методом определителей:


В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразо­ванным уравнениям. Если в линейной модели и моделях, нели­нейных по переменным, при оценке параметров исходят из кри­терия min, то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным дан­ным результативного признака, а к их преобразованным величи­нам, т. е.ln y, 1/y. Так, в степенной функции МНК применяется к преобразованному уравнению lny = lnα + β ln x ln ε. Это значит, что оценка параметров основывается на миними­зации суммы квадратов отклонений в логарифмах. Соответственно если в линейных моделях то в моделях, нелинейных по оцениваемым параметрам, . Вследствие этого оценка параметров оказываются несколько смещенной.

 


1 | 2 | 3 | 4 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)