|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Методы описания движенияДля математического описания движения жидкости используются два различных метода (подхода): Лагранжа и Эйлера. При лагранжевом подходе непрерывный поток жидкости рас-сматривается как движение множества жидких частиц. Для описания перемещения в пространстве отдельной жидкой частицы ее рассматривают как материальную точку, положение которой в данный момент времени t может быть выражено в координатной форме: x = x (t), y = y (t), z = z (t). (2.1) В сплошном потоке имеется континуум таких частиц, которые надо как-то выделить (индивидуализировать). Для этого можно в выражение закона движения точки (2.1) добавить в качестве аргументов в общем случае 3 параметра a, b и c – например, значения координат частицы в начальный момент времени. Тогда вместо (2.1) следует записать x=x (t,a,b,c), y=y (t,a,b,c), z=z (t,a,b,c). (2.2) Параметры a, b, с называются переменными Лагранжа. Если они фиксированы, то соотношения (2.2) выражают закон движения выделенной жидкой частицы; при изменении этих параметров осуществляется переход от одной частицы к другой и таким образом достигается описание движения всей массы жидкости в целом. Мгновенная скорость жидкой частицы V может быть представлена своими составляющими в декартовой системе координат , , . (2.3) Абсолютная величина (модуль) скорости при этом определяется как . Другой прием описания движения жидкости, получивший более широкое распространение, был предложен Эйлером. Он основан на понятии местной скорости или скорости в точке. Этим термином обозначают скорость жидкой частицы, находящейся в выбранной точке области течения в данный момент времени. В общем случае местные скорости различны в один и тот же момент времени в различных точках, а также могут изменяться во времени в каждой фиксированной точке. Таким образом, проекции скорости в общем случае могут быть представлены как u = u (x, y, z, t), v = v (x, y, z, t), w = w (x, y, z, t). (2.4) Этими функциями характеризуется поле скоростей жидкости, т.е. совокупность значений вектора скорости V (u,v,w), определенного в каждой точке области течения. В выражениях (2.3) параметры x, y, z, t называются переменными Эйлера. Ускорение жидкой частицы может быть выражено при комбинации методов Эйлера и Лагранжа: (2.5) где – оператор Гамильтона или набла-оператор. В (2.5) вектор называется локальным ускорением, а вектор – конвективным ускорением. В скалярной форме составляющие вектора ускорения по осям декартовой системы координат имеют вид Виды движения Течение жидкости вообще может быть неустановившимся (нестационарным) или установившимся (стационарным). Неустановившееся движение – такое, при котором в любой точке потока скорость движения и давление с течением времени изменяются, т.е. u и P зависят не только от координат точки в потоке, но и от момента времени, в который определяются характеристики движения т.е.: и . Примером неустановившегося движения может являться вытекание жидкости из опорожняющегося сосуда, при котором уровень жидкости в сосуде постепенно меняется (уменьшается) по мере вытекания жидкости. Установившееся движение – такое, при котором в любой точке потока скорость движения и давление с течением времени не изменяются, т.е. u и P зависят только от координат точки в потоке, но не зависят от момента времени, в который определяются характеристики движения: и , и, следовательно, , , , . (2.52) Пример установившегося движения - вытекание жидкости из сосуда с постоянным уровнем, который не меняется (остаётся постоянным) по мере вытекания жидкости. В случае установившегося течения в процессе движения любая частица, попадая в заданное, относительно твёрдых стенок, место потока, всегда имеет одинаковые параметры движения. Следовательно, каждая частица движется по определённой траектории. Вихревое движение — движение жидкости или газа, при котором мгновенная скорость вращения элементарных объемов среды не равна нулю и всюду тождественна. Количественной мерой завихренности служит вектор , где v — скорость жидкости; ω называют вектором вихря или просто завихренностью. Эквивалентной мерой завихренности, более удобной в теоретических построениях, является антисимметричная часть тензора градиента скорости . В декартовых координатах x 1, x 2, x 3 связь компонент вектора ω и тензора Ω дается выражениями
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |