АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Многокорпусные выпарные установки (МВУ)

Читайте также:
  1. II. Программные установки в движениях декабристов и народников: общее и особенное.
  2. Возможности inf-файлов для установки программ.
  3. Выбор расчетного режима холодильной установки
  4. Выбор способа охлаждения холодильника и схемы холодильной установки
  5. Глава 3. Оценочные диспозиции (Ценностные установки)
  6. Двигательные установки ракет
  7. Електроустановки житлових, громадянських адміністративних та побутових будинків. Терміни та визначення.
  8. Значение диаграммы холодильных агентов для анализа работы холодильной установки и ее обслуживания
  9. Измерительные приборы и установки
  10. КОНСТРУКЦІЯ І ПРИНЦИП ДІЇ ЛАБОРАТОРНОЇ УСТАНОВКИ автоматизованого приводу компресора
  11. Опис дослідної установки

На современных предприятиях экономичность и интенсификация процессов выпаривания достигается применение многокорпусных (многоступенчатых) установок непрерывного действия. В МВУ греющий пар поступает только на обогрев I-го корпуса, последующие корпуса обогреваются вторичным паром предыдущих, что снижает потребление греющего пара.

Для кипения раствора в каждом корпусе необходимо обеспечить разность между температурами вторичного пара в предыдущем корпусе и кипящего раствора следующего за ним корпуса. Эта разность температур создается благодаря снижению давления в каждом последующем корпусе по сравнению с предыдущим.

Первые корпуса МВУ обычно работают при атмосферном и повышенном давлении, а последующие – под вакуумом. Ввиду низкого давления в последующем ним корпусе получающийся в неё вторичный пар (с низкой температурой) не используется как ТН, а конденсируется в барометрическом конденсаторе смешения (рис. 4-13). В результате конденсации за счет непосредственного контакта охлаждающей воды с паром образуется вакуум, который обеспечивает оптимальный режим работы МВУ.

Рис.4-13.Барометрический конденсатор:

1 – корпус; 2 – сегментные полки;

3 – газоотделитель; 4 – барометрическая труба;

5 – барометрический ящик

Температура кипения раствора в МВУ понижается до I-го корпуса к последнему, и раствор при переходе из какого-либо корпуса в последующий за ним попадает в пространство, где давление и температура ниже, поэтому он охлаждается. Выделяется тепло и за счет него испаряется некоторое количество воды из растворителя без участия теплоты греющего пара. Это происходит во всех корпусах МВУЮ кроме I-го, и носит название самоиспарения раствора.

В МВУ многократное использование теплоты значительно снижает удельный расход греющего пара; расход пара на выпаривание 1 кг. Воды обратно пропорционален числу корпусов.

С увеличением числа корпусов возрастают температурные потери., уменьшается полезная разность температур между корпусами и, кроме того, повышается расход металла, начальные завтра ты на установку и амортизационные отчисления, расходы на текущие ремонты, усложняется эксплуатация. Наиболее часто применяют трех- и четырех-корпусные МВУ.

 

Схемы МВУ

По технологическим признакам различают следующие схемы промышленных ВУ непрерывного действия:

1) по числу ступеней – одноступенчатые и многоступенчатые (в одной ступени может быть несколько корпусов, соединенных параллельно);

2) по давлению вторичного пара в последней ступени – работающие под разряжением, под давлением, при ухудшенном вакууме;

3) в зависимости от технологии обработки раствора – одностадийные и многостадийные, где раствор может поступать на дополнительную обработку с возвратом на допаривание;

4) по подводу греющего пара – с подаче пара в первую ступень, с нуль-корпусов, где используется, где используется пар двух давлений;

5) по наличию отбора пара – на подогрев раствора или для отпуска пара на сторону;

6) по направлению движения греющего пара и выпариваемого раствора – прямоточные, противоточные, с параллельным и смешанным питанием корпусов.

Наибольшее применение нашли ВУ с прямоточным питанием (рис 4-14). В которых, греющий пар, вторичный пар и выпариваемый раствор проходят в одном направлении.

Рис.4-14.Схема с прямоточным питанием:

1 – подогреватель; 2 - 4 – корпуса; 5 – барометрический конденсатор

 

В такой установке предварительно подогретый в подогревателе 1 раствор переходит из одного корпуса в другой (2-4) благодаря разности давлений в корпусах. Из корпуса 4 вторичный пар направляется в барометрический конденсатор 5. За счет конденсации пара в ВУ создается необходимое разряжение. Выпаренный раствор отбирается из последнего корпуса 4. Достоинство – возможность перемещения упариваемого раствора без применения насосов, только за счет понижения давления от первого корпуса к последнему. Недостатки – повышенная вязкость раствора в последнем корпусе вследствие снижения температуры и повышения конденсации от I-го корпуса к последнему. В результате резко снижаются КТП в той же последовательности.

 

Рис.4-15.Схема с противоточным питанием

 

При схеме с противоточным питанием (рис 4-15) этот недостаток устраняется, так как раствор и вторичный пар движутся в противоположных направлениях и по мере концентрирования раствора от последнего корпуса к первому температура в корпусах повышается, вследствие этого вязкость раствора к КТП изменяются по корпусам значительно меньше, чем при прямотоке. Противоточными МВУ пользуются при упаривании растворов, вязкость которых резко возрастает с увеличением концентрации. Недостатки – увеличение расхода пара (на 10-15°) по сравнению с прямотоком дополнительный расход электроэнергии на перекачку раствора из корпуса в корпус направлении возрастающих давлений.

 

 

Рис.4-16.Схема с параллельным питанием

 

С параллельным питанием (рис. 4-16) применяются МВУ при выпаривании кристаллизующихся растворов и когда не требуется большого концентрирования раствора. Выпариваемый раствор поступает одновременно во все корпуса, греющий пар поступает в первый корпус, а вторичные пары – из корпуса в корпус. Упаренный раствор отбирается из каждого корпуса. Достоинство – простота схемы коммуникаций для подачи исходного и отбора упаренного раствора.

 

Рис.4-17.Схема смешанного тока

 

Схема смешанного тока (рис. 4-17) применима тогда, когда применятся схема противотока. Преимущество – уменьшение числа единицы перекачивающихся насосов. Схема используется для упаривания растворов с повышенной вязкостью.

В промышленных МВУ аппараты часто соединяются коммуникациями так, что бы их можно было собирать в различные схемы. Таким образом, часть корпусов включается параллельно, другая часть – последовательно.

 

Расчет МВУ

А. Материальный баланс двухкорпусной установки:

где хК2 и (GH-W1-W2) – концентрация и количество упаренного раствора, уходящего из второго корпуса ВУ.

Материальный баланс для МВУ состоящий их n корпусов:

(4-12)  

где хKn – концентрация раствора на выходе из n-го корпуса МВУ.

Общее количество выпариваемой во всех корпусах воды:

(4-13)  

здесь хН и хК – концентрация исходного и упаренного растворов.

Общее количество выпаренной воды:

где - количество воды, выпариваемой в I-м, II-м, III-м и последнем корпусах, кг/с.

Концентрация раствора на выходе из I-го, III-го, … n-го корпуса МВУ:


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)