АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Работа 4.1 Дифференциальные усилители на биполярных транзисторах

Читайте также:
  1. II. Работа в базе данных Microsoft Access
  2. II. Работа с лексическим составом языка
  3. II. Работа с текстом
  4. IV. Культурно-просветительская работа.
  5. IV. Работа с текстом
  6. V1: Договорная работа с поставщиками и посредниками
  7. Автором опыта выделен алгоритм формирования умения работать с моделями.
  8. Безопасность при погузочно-разгрузочных работах.
  9. Безопасность труда при эксплуатации установок и сосудов работающих под давлением
  10. Бумаги или работа?
  11. В 1. Физическая сущность сварочной дуги. Зажигание дуги. Термоэлектронная и автоэлектронная эмиссии. Работа выхода электрона.
  12. В Казахстане разработали интернет-алфавит казахского языка на латинице

В современной радиоэлектронике широкое применение находят дифференциальные (разностные) усилители. Дифференциальный усилитель (ДУ) представляет симметричную схему с двумя входами и двумя выходами (рис. 4.1.1). Вход, обозначенный символом «+», называют неинвертирующим. Вход, обозначенный символом «–», называют инвертирующим. Поскольку схема имеет два выхода, в качестве выходного можно использовать напряжения , или их разность . В последнем случае выход дифференциального усилителя называют симметричным.

Рис. 4.1.1

Сигналы на входе дифференциального усилителя представляют в виде суммы дифференциальной и синфазной составляющих:

;

.

Из последних равенств следует, что дифференциальный сигнал равен разности входных напряжений: , (4.1.1)

а синфазный – их полусумме: . (4.1.2)

В соответствии с (4.1.1) и (4.1.2) источник сигнала на входе дифференциального усилителя можно представить эквивалентной схемой, показанной на рис. 4.1.2.

Различают коэффициенты усиления дифференциального и синфазного сигналов:

;

.

Рис. 4.1.2

Важное свойство дифференциального усилителя заключается в том, что он усиливает дифференциальные и ослабляет синфазные составляющие сигнала. Одним из главных параметров дифференциального усилителя является коэффициент ослабления синфазного сигнала, который показывает, во сколько раз коэффициент усиления дифференциального сигнала больше коэффициента синфазного сигнала: .Дифференциальные усилители находят широкое применение в аналоговых интегральных схемах: операционных усилителях, аналоговых перемножителях, компараторах и т. д. Это объясняется следующими причинами.

1. ДУ эффективно подавляет синфазные составляющие сигнала, которые как правило являются помехами.

2. ДУ не требуют включения развязывающих конденсаторов.

3. Работа дифференциальных усилителей основана на идентичности параметров элементов, входящих в его состав. Это легко обеспечивается в интегральных схемах, где элементы расположены на одном кристалле на расстоянии нескольких микрон друг от друга.

4. 4.1.3. Основные параметры ДУ на биполярных транзисторах

5. Коэффициент усиления дифференциального сигнала

6. Предположим, что на входах усилителя действует дифференциальный сигнал малой амплитуды, и транзисторы работают в активном режиме. В этом случае коэффициенты усиления дифференциального сигнала

7. .

8. Для симметричного выхода .

9. Коэффициент усиления дифференциального сигнала определяется отношением сопротивлений в цепях эмиттера и коллектора. Часто для увеличения резисторы и исключают. В этом случае сопротивление цепи эмиттера равно дифференциальному сопротивлению эмиттерного перехода:

10. .

11. Обычно это сопротивление составляет несколько десятков ом.

12.

13. Коэффициент усиления синфазного сигнала

14. Выходные напряжения, обусловленные действием источника синфазного сигнала

15. .

16. Коэффициент усиления синфазного сигнала

17. .

18. Чем больше внутреннее сопротивление источника тока, тем меньше коэффициент усиления синфазного сигнала.

Коэффициент ослабления синфазного сигнала

19. .

20. Для симметричного выхода напряжение синфазной составляющей , поэтому .

Коэффициент ослабления синфазного сигнала прямо пропорционален сопротивлению источника тока.

21. Входные сопротивления дифференциальных усилителей на биполярных транзисторах

22. Определим входное сопротивление дифференциального усилителя на рис. 4.1.3 для дифференциальной и синфазной составляющих сигнала.

23. Входной ток, обусловленный дифференциальной составляющей сигнала:

24. .

25. Входное сопротивление для дифференциальной составляющей

26. .

27. Входной ток, обусловленный синфазной составляющей сигнала,

28. .

29. Входное сопротивление для синфазной составляющей

30.

31. операционный усилитель (ОУ, OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

32. В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Операционный усилитель (ОУ, OpAmp) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Обозначения

Обозначение операционного усилителя на схемах

На рисунке показано схематичное изображение операционного усилителя. Выводы имеют следующее значение:

§ V +: неинвертирующий вход

§ V : инвертирующий вход

§ V out: выход

§ V S+: плюс источника питания (также может обозначаться как , , или )

§ V S−: минус источника питания (также может обозначаться как , , или )

Указанные пять выводов присутствуют в любом ОУ, они необходимы для его функционирования. Однако, существуют операционные усилители, не имеющие неинвертиующего входа[ источник не указан 786 дней ]. В частности, такие ОУ находят применение в аналоговых вычислительных машинах (АВМ). ОУ, применяемые в АВМ, принято делить на 5 классов, из которых ОУ первого и второго класса имеют только один вход. Операционные усилители первого класса — усилители высокой точности (УВТ) с одним входом. Они предназначены для работы в составе интеграторов, сумматоров, устройств слежения-хранения, электронных коэффициентов. Высокий коэффициент усиления, предельно малые значения смещения нуля, входного тока и дрейфа нуля, высокое быстродействие обеспечивают снижение погрешности, вносимой усилителем, ниже 0,01 %. Операционные усилители второго класса — усилители средней точности (УСТ) также с одним входом, обладающие меньшим коэффициентом усиления и большими значениями смещения и дрейфа нуля. Эти ОУ предназначены для применения в составе электронных устройств установки коэффициентов, инверторов, электронных переключателей, в функциональных преобразователях, множительных устройствах. Помимо этого, некоторые ОУ могут иметь дополнительные выводы (предназначенные, например, для установки тока покоя, частотной коррекции, балансировки или других функций).

Выводы питания (V S+ и V S−) могут быть обозначены по-разному (см. выводы питания интегральных схем). Часто выводы питания не рисуют на схеме, чтобы не загромождать её несущественными деталями, при этом способ подключения этих выводов явно не указывается или считается очевидным (особенно часто это происходит при изображении одного усилителя из микросхемы с четырьмя усилителями с общими выводами питания). При обозначении ОУ на схемах можно менять местами инвертирующий и неинвертирующий входы, если это удобно; выводы питания, как правило, всегда располагают единственным способом (положительный вверху).

 


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)