АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Понятие электронный ключ. Виды ключей. Работа транзистора в ключевом режиме

Читайте также:
  1. I. Договоры товарищества. Понятие, типы и виды
  2. I. ЛИЗИНГОВЫЙ КРЕДИТ: ПОНЯТИЕ, ИСТОРИЯ РАЗВИТИЯ, ОСОБЕННОСТИ, КЛАССИФИКАЦИЯ
  3. I. Общее понятие о вещных правах на чужую вещь
  4. I. Общее понятие о залоговом праве
  5. I. Общее понятие о лице в праве
  6. I. Общее понятие о юридическом лице и виды юридического лица
  7. I. Общее понятие об опеке
  8. I. Понятие и анализ оборотного капитала
  9. I. Понятие о договоре
  10. I. Понятие о завещании и его составление (форма)
  11. I. Понятие о семейном праве
  12. I. Понятие об обязательстве как обязательственном отношении

Ключи включают и выключают управляемый объект. Выключатель это ключ. Механические ключи обладают малой скоростью срабатывания и дребезгом контактов. Поэтому они заменяются электронными ключами, которые могут быть диодными, тиристорными, транзисторными и др.

Качество работы электронного ключа (ключа) определяется его быстродействием, сопротивлением во включенном состоянии и сопротивлением в выключенном состоянии. Реальные ключи в замкнутом состоянии обладают конечным сопротивлением, а в разомкнутом --их сопротивление не равно ∞.

Диодные и тиристорные ключи "включают" нагрузку при определенной полярности входного напряжения: при прямом напряжении диод открыт и нагрузка включена, при обратном—выключена.

Ключевые схемы можно разделить на числовые (цифровые) и аналоговые. Аналоговые схемы обладают дополнительным входом, позволяющим передавать в нагрузку состояние другого входа. Наиболее широкое применение находят числовые ключи, среди которых преобладающее положение занимают транзисторные ключи.

 

7.1.2 Работа транзистора в ключевом режиме. Занятие 58.

Транзисторный ключ это усилитель, который работает в ключевом режиме: рабочая точка может находиться только в области отсечки (транзистор закрыт), либо в области насыщения (транзистор не только открыт, но и насыщен).

На рис. показана схема ключа на биполярном транзисторе и рабочая статическая характеристика ключа. Нагрузочная прямая АВ построена в соответствии с соотношением

Uкэ = Uк – Iк Rк,

где Uкэ напряжение между коллектором и эмиттером,

Uк –напряжение питания коллекторной цепи,

Iк Rк —падение напряжения на сопротивлении в цепи коллектора.

При Uкэ =0 прямая проходит через точку В, в которой Uк = Iк Rк и Iк =

При Iк = 0 прямая проходит через точку А, в которой Uкэ = Uк.

Для обеспечения режима отсечки (ниже точки N, ток коллектора практически равен нулю) ток базы должен быть отрицательным. Для этого напряжение Uвх должно быть отрицательным (или равным нулю) относительно эмиттера. Для надежного запирания транзистора отрицательное напряжение базы должно быть по абсолютной величине больше некоторого порогового напряжения.

Для обеспечения режима насыщения транзистор должен быть в таком состоянии, когда эмиттер не в состоянии инжектировать большего количества электронов (носителей). Этому состоянию соответствует ток базы Iб нас и точка М нагрузочной прямой. Транзистор пропускает ток Iк нас , на транзисторе падает очень небольшое напряжение Uкэ (доли В для германиевых и 1…1,5В —для кремниевых транзисторов).

Быстродействие ключа определяется крутизной фронта и среза выходного напряжения. Эти параметры зависят от инерционности диффузионного движения неосновных носителей и времени рассасывания неосновных носителей, накопленных в базе. Высокочастотные транзисторы в какой-то мере решают этот вопрос. Однако радикальным решением является применение форсирующих конденсаторов в цепи базы и применение ненасыщенных ключей, ток базы которых меньше, чем у насыщенных. При применении форсирующих емкостей ток базы в момент включения максимален, так как сопротивление конденсатора равно нулю. Повышенный ток ускоряет процесс отпирания ключа. По мере заряда конденсатора сопротивление его увеличивается и то базы приобретает номинальное значение.

При выключении ключа ток базы больше, чем при отсутствии конденсатора, так как на конденсаторе накопилось напряжение. Это уменьшает время рассасывания носителей.

При применении ненасыщенных ключей транзистор пропускает меньший ток, но быстродействие его выше. При применении этого способа большую роль играют диоды Шоттки, которые соединяют цепь базы с коллектором. Диод Шоттки имеет напряжение отпирания ниже, чем напряжение насыщения коллекторного перехода на 0,…0,2В, поэтому он открывается до наступления насыщения, и часть тока базы проходит в коллекторный переход, уменьшая накопление неосновных носителей в базе. Изготовление диодов Шоттки в микроэлектронике не требует дополнительных технологических операций. Поэтому их широко применяют.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)