АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Лекция 5 Постоянное магнитное поле

Читайте также:
  1. Cущность прогнозирования (лекция I)
  2. VI. РЕЛИГИИ И АНТИПОЛЕ.
  3. В заданиях 10-14 запишите ответ в отведенном для этого поле. Для заданий 11,12,13 запишите полное решение.
  4. В заданиях 10-14 запишите ответ в отведенном для этого поле. Для заданий 11,12,13 запишите полное решение.
  5. Выселение нанимателя на постоянное новое место жительства в иное помещение.
  6. Гравитационное, электромагнитное, сильное, слабое.
  7. Дисциплина «метафизика» в лекциях Феофилакта Лопатинского
  8. Лекция 1. Понятие эконометрики и эконометрических моделей.
  9. Лекция 1. Понятие «арт-менеджмент», основные направления и сущность.
  10. Лекция 1. Предмет юридической конфликтологии
  11. Лекция 1. СОЦИОЛОГИЯ КАК НАУКА ОБ ОБЩЕСТВЕ: ПРЕДМЕТ, СТРУКТУРА, ФУНКЦИИ
  12. Лекция 1. Электростатика.

§ 5 –1 Закон Ампера.

Рис.17. Взаимодействие двух элементов тока. Опыты показывают, что два элемента тока взаимодейству-ют друг с другом. Принятые представления заставляют нас предположить, что это взаимодействие осуществляется посредством поля. Это поле названо магнитным. Изуче-ние свойств этого поля логично бы было проводить по аналогии с электростатическимполем, однако до настоя-щего времени магнитных «зарядов» не обнаружено. При-нято считать, что магнитное поле всегда создается движу-щимися зарядами, т.е. током. Бесконечно малый отрезок проводника, по которому проходит ток, принято называть

элементом тока. Ампером было установлено, что величина сил взаимодействия двух элементов определяется выражением:

, ,

где смысл принятых обозначений ясен из рис.17 и 18. Величина k как и прежде введена из соображений размерности. В системе СИ она равна m0 /4p; значение постоянной m0 , которую принято называть магнитной постоянной вакуума, записывается так:

m0 = 4p ´ 10 –7 .

Для определения силы как вектора закон Ампера должен быть изменен так, чтобы справа стояло векторное произведение:

, .

По аналогии с электростатическим полем для характеристики магнитного поля можно ввести силовую величину, отнесенную к единичному элементу тока. В теории магнитизма эту величину принято называть магнитной индукцией, точнее вектором магнитной индукции. Тогда закон Ампера для произвольного элемента тока I2 dl2 может быть записан как

dF2 = I2 [d l 2 dB], dB = d l 1sina1, dB = k [d l 1,r12].

Это определение как модуля, так и самого вектора dB носит название закона Био-Савара-Лапласа.

Рис.18. Правило право-го винта. Однако для установления единиц измерения величины макро-скопического вектора B,его удобнее определить несколько иным способом. Пусть исследуемое магнитное поле создается системой проводников, а для измерения силы используется в качестве элемента тока короткий жесткий проводник, соеди-ненный с источником тока гибкими проводами. Сила, действу-ющая на пробный элемент, зависит от его ориентации в прост-ранстве. В каждой точке поля существует физически выделенное направление В, которое замечательно тем, что, во-первых, модуль действующей силы пропорционален синусу угла между этим направлением и направлением элемента тока, и, во-вторых, направление силы связано с направлением элемента тока и физи- чески выделенным направлением В известным правилом право-

го винта:если вращать вектор d l по кратчайшему углу в сторону к физически выделенному направлению, то движение оси винта покажет направление действия силы dF = BId l sina. В векторной записи

dF = I[d l B].

Сила максимальна, когда d l перпендикулярно направлению В. В этом случае В определя-ется как:

.

Отсюда единица измерения магнитной индукции в системе СИ, называемая тесла, определяется как 1Н/ (1A´1M).

Магнитное поле можно наглядно изобразить с помощью силовых линий, проводя их по тем же правилам, чио и в электростатике, но характер этих линий – другой.

Как уже отмечалось,магнитных зарядов не существует, поэтому свойства силовых линий магнитного поля отличаются от свойств электростатического поля. Из следствия теоремы Гаусса вытекает, что поток вектора В через любую замкнутую поверхность должен равняться нулю, т.е. силовые линии магнитной индукции непрерывны, и

.

Теоретический расчет величины В для конкретной конфигурации проводников произво-дится на основании закона Био-Савара-Лапласа с использованием принципа суперпозиции

, где суммирование произодится по всем проводникам, образующих данную систему.

 

§ 5 –2 Поле прямого тока и витка с током.

В качестве примеров расчета значений вектора магнитной индукции вычислим поле прямого тока и в центре круглого витка с током.

Поле прямого тока.

Рис.19. Поле прямого тока. Пусть требуется найти поле отбесконечного прямого тока I на расстоянии R от него. Выберем элемент тока d l, как показано на рис.19. Величина модуля вектора определяется выражением Для суммирования свяжем все переменные друг с другом, выбирая в качестве интегрируемой переменной угол a. Из рис.19 видно, что ; . Подставляя эти выражения в формулу для В, после пре-образований получим:

;

где a1 и a2 – углы, соответствующие направлениям на концы проводника. Если проводник

 

бесконечный, то a1® 0, а a2® p, и .

Направление вектора В определяется правилом вычисления векторного произведения: первый сомножитель (dl в нашем случае) вращается в направлении наименьшего угла ко второму сомножителю (r). Направление движения оси правого винта при таком вращении покажет направление их векторного произведения (на рис.- от нас – значок -Ä). Силовые линии магнитного поля являются концентрическими окружностями, охватывающими про-водник с током. Все они лежат в плоскости, перпендикулярной направлению тока.

Поле витка с током.

Вычислим значение вектора магнитной индукции в центре круглого витка, обтекаемого

Рис.20. Поле в центре витка с током. током I. Как видно из рис.20, в этом случае элемент тока dl перпендикулярен радиусу R, и суммирование сводится просто к вычислению длины окружности. Поэтому . Все элементы тока дают одинаковое направление вектора dB так,что суммарный вектор В перпендикулярен плоскости чертежа и направлен на нас (значок ·).  

 

 

§ 5 –3 Теорема о циркуляции магнитного поля.

Пусть имеется тонкий бесконечный провод, по которому проходит ток силой I. Выберем мысленно окружность радиуса R, концентрическую заданному току и лежащую в плоскос-ти, перпендикулярной ему. Рассмотрим сумму произведений проекций вектора магнитной

  Рис.21. Вычисление цир- куляции. индукции на соответствующий элемент длины окружности ра-диуса R (рис.21) Bldl. Если суммирование проводится по всей длине окружности, то результат носит название циркуляции, т.е. его можно за-писать так .Для выбранного нами контура в виде окруж-ности величина интеграла может быть вычислена непосред-ственно. Во всех точках контура вектора В направлены по касательной к окружности, а значения В постоянны и равны В = , так что его можно вынести за знак интеграла. Тогда

 

= 2pR и циркуляция .

Рис.22. К расчету элемента контура. Если мысленный контур не концентричен току, то результат суммирования не меняется, т.к. для любого элемента контура (см. рис.22) Вl dl = и не зависит от расстояния х от тока до элемента контура. Угол da означает малый угол, под которым виден элемент длины контура из точки пересечения его площади током. Очевидно, что полное значение суммирования не изменится и для произвольной формы контура, который удобно в этом случае

представить как ломаную линию, состоящую из элементов окружностей и приращений ра-диуса. Здесь следует помнить, что проекции вектора В на приращения радиуса равны нулю.

Если плоскость, в которой лежит наш мысленный контур, не перпендикулярен на-правлению тока, то контур можно спроектировать на плоскость, нормальную к току, снова результат вычисления циркуляции будет прежний. Если через плоскость нашего контура проходит несколько токов I1, I2 и т.д., то поскольку выражение для циркуляции остается справедливым для каждого тока в отдельности, оно останется справедливым и для суммы токов. Итак, в общем можно записать:

.

Полученное выражение носит название теоремы о циркуляции и является одним из уравнений Максвелла. Суммирование в правой части этого уравнения носит алгебраи-ческий характер: токи могут иметь знак (+) или (-) в зависимости от того, острый или тупой углы образуют они с направлением заданной нормали к площади, охватываемой контуром.

Поля, циркуляция которых отлична от нуля, называются вихревыми.

Словесная формулировка теоремы о циркуляции:

Циркуляция вектора магнитной индукции по закнутому контуру с точностью до пос-тоянного множителя m0 равна алгебраической сумме токов, охватываемых этим контуром.

§ 5 –4 Поле длинного соленоида.

Применим теорему о циркуляции для вычисления поля на оси длинного соленоида. На рис.23 показаны силовые линии магнитного поля для катушки. Мысленно удлиняя ее, можно догадаться, что для достаточно протяженной катушки поле внутри соленоида и снаружи его будет направлено горизонально (относительно рис.) Выберем контур в виде прямоугольникаАВСD так, чтобы сторона AD лежала на оси соленоида. Тогда циркуляцию

Рис.23. Силовые линии магнитного поля соленоида. вектора магнитной индукции по такому контуру можно представить состоящей из четырех частей: + . Однако на трех из них значения Вn равны нулю: на отрезках АВ и СD вектор В перпендикулярен этим сторонам, а отре-зок ВС можно удалить в бесконечность, где В = 0. На отрез-ке AD значения В постоянны, и ВlC, где l C - дли-на соленоида. Т.к. ток I пересекает контур N раз (N- число витков), то Вl C = m0 NI, откуда В =m0 nI, где n =N/ l C.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)