|
|||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Лекция 5 Постоянное магнитное поле§ 5 –1 Закон Ампера.
элементом тока. Ампером было установлено, что величина сил взаимодействия двух элементов определяется выражением: , , где смысл принятых обозначений ясен из рис.17 и 18. Величина k как и прежде введена из соображений размерности. В системе СИ она равна m0 /4p; значение постоянной m0 , которую принято называть магнитной постоянной вакуума, записывается так: m0 = 4p ´ 10 –7 . Для определения силы как вектора закон Ампера должен быть изменен так, чтобы справа стояло векторное произведение: , . По аналогии с электростатическим полем для характеристики магнитного поля можно ввести силовую величину, отнесенную к единичному элементу тока. В теории магнитизма эту величину принято называть магнитной индукцией, точнее вектором магнитной индукции. Тогда закон Ампера для произвольного элемента тока I2 dl2 может быть записан как dF2 = I2 [d l 2 dB], dB = d l 1sina1, dB = k [d l 1,r12]. Это определение как модуля, так и самого вектора dB носит название закона Био-Савара-Лапласа.
го винта:если вращать вектор d l по кратчайшему углу в сторону к физически выделенному направлению, то движение оси винта покажет направление действия силы dF = BId l sina. В векторной записи dF = I[d l B]. Сила максимальна, когда d l перпендикулярно направлению В. В этом случае В определя-ется как: . Отсюда единица измерения магнитной индукции в системе СИ, называемая тесла, определяется как 1Н/ (1A´1M). Магнитное поле можно наглядно изобразить с помощью силовых линий, проводя их по тем же правилам, чио и в электростатике, но характер этих линий – другой. Как уже отмечалось,магнитных зарядов не существует, поэтому свойства силовых линий магнитного поля отличаются от свойств электростатического поля. Из следствия теоремы Гаусса вытекает, что поток вектора В через любую замкнутую поверхность должен равняться нулю, т.е. силовые линии магнитной индукции непрерывны, и . Теоретический расчет величины В для конкретной конфигурации проводников произво-дится на основании закона Био-Савара-Лапласа с использованием принципа суперпозиции , где суммирование произодится по всем проводникам, образующих данную систему.
§ 5 –2 Поле прямого тока и витка с током. В качестве примеров расчета значений вектора магнитной индукции вычислим поле прямого тока и в центре круглого витка с током. Поле прямого тока.
; где a1 и a2 – углы, соответствующие направлениям на концы проводника. Если проводник
бесконечный, то a1® 0, а a2® p, и . Направление вектора В определяется правилом вычисления векторного произведения: первый сомножитель (dl в нашем случае) вращается в направлении наименьшего угла ко второму сомножителю (r). Направление движения оси правого винта при таком вращении покажет направление их векторного произведения (на рис.- от нас – значок -Ä). Силовые линии магнитного поля являются концентрическими окружностями, охватывающими про-водник с током. Все они лежат в плоскости, перпендикулярной направлению тока. Поле витка с током. Вычислим значение вектора магнитной индукции в центре круглого витка, обтекаемого
§ 5 –3 Теорема о циркуляции магнитного поля. Пусть имеется тонкий бесконечный провод, по которому проходит ток силой I. Выберем мысленно окружность радиуса R, концентрическую заданному току и лежащую в плоскос-ти, перпендикулярной ему. Рассмотрим сумму произведений проекций вектора магнитной
= 2pR и циркуляция .
представить как ломаную линию, состоящую из элементов окружностей и приращений ра-диуса. Здесь следует помнить, что проекции вектора В на приращения радиуса равны нулю. Если плоскость, в которой лежит наш мысленный контур, не перпендикулярен на-правлению тока, то контур можно спроектировать на плоскость, нормальную к току, снова результат вычисления циркуляции будет прежний. Если через плоскость нашего контура проходит несколько токов I1, I2 и т.д., то поскольку выражение для циркуляции остается справедливым для каждого тока в отдельности, оно останется справедливым и для суммы токов. Итак, в общем можно записать: . Полученное выражение носит название теоремы о циркуляции и является одним из уравнений Максвелла. Суммирование в правой части этого уравнения носит алгебраи-ческий характер: токи могут иметь знак (+) или (-) в зависимости от того, острый или тупой углы образуют они с направлением заданной нормали к площади, охватываемой контуром. Поля, циркуляция которых отлична от нуля, называются вихревыми. Словесная формулировка теоремы о циркуляции: Циркуляция вектора магнитной индукции по закнутому контуру с точностью до пос-тоянного множителя m0 равна алгебраической сумме токов, охватываемых этим контуром. § 5 –4 Поле длинного соленоида. Применим теорему о циркуляции для вычисления поля на оси длинного соленоида. На рис.23 показаны силовые линии магнитного поля для катушки. Мысленно удлиняя ее, можно догадаться, что для достаточно протяженной катушки поле внутри соленоида и снаружи его будет направлено горизонально (относительно рис.) Выберем контур в виде прямоугольникаАВСD так, чтобы сторона AD лежала на оси соленоида. Тогда циркуляцию
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |