АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Статическая и динамическая оперативная память

Читайте также:
  1. IButton с энергонезависимой однократнопрограммируемой EPROM-памятью
  2. IButton с энергонезависимой статической памятью
  3. RDRAM (Rambus DRAM) - Rambus-память
  4. Автоматическое управление памятью ссылочных данных
  5. Адинамическая фаза.
  6. Анализатор – это сложная нейродинамическая система, которая представляет собой афферентную часть рефлекторного аппарата.
  7. Виртуальная память. Алгоритм преобразования виртуального адреса в физический
  8. Виртуальная память. Подкачка страниц.
  9. Воспитание памятью Сердца
  10. ВОСПРИЯТИЕ, ВНИМАНИЕ И ПАМЯТЬ ДОШКОЛЬНИКА
  11. Глава 10. Память - 273
  12. Динамическая модель «совокупный спрос – совокупное предложение»

Оперативная память может формироваться из микросхем динамического (Dynamic Random Access Memory — DRAM) или статического (Static Random Access Memory — SRAM) типа.

Память SRAM статического типа обладает существенно более высоким быстродействием, но значительно дороже динамической памяти. В статической памяти элементы (ячейки) построены на различных вариантах триггеров (схем с двумя устойчивыми состояниями). После записи бита в такую ячейку она может пребывать в этом состоянии столь угодно долго, необходимо только наличие питания. При обращении к микросхеме статической памяти на нее подается полный адрес, который при помощи внутреннего дешифратора преобразуется в сигналы выборки из конкретной ячейки. Ячейки SRAM имеют малое время срабатывания (единицы наносекунд), однако микросхемы на их основе отличаются низкой удельной емкостью (единицы Мбит на корпус) и высоким энергопотреблением. Поэтому статическая память используется в основном в качестве микропроцессорной и буферной (кэш-память).

В динамической памяти DRAM ячейки построены на основе полупроводниковых областей с хранением зарядов — своеобразных конденсаторов, занимающих гораздо меньшую площадь, нежели триггеры, и практически не потребляющих энергии при хранении. Конденсаторы расположены на пересечении вертикальных и горизонтальных шин матрицы; запись и считывание информации осуществляется подачей электрических импульсов по тем шинам матрицы, которые соединены с элементами, принадлежащими выбранной ячейке памяти. При обращении к микросхеме на ее входы вначале подается адрес строки матрицы, сопровождаемый сигналом RAS (Row Address Strobe — строб адреса строки), затем, через некоторое время — адрес столбца, сопровождаемый сигналом CAS (Column Address Strobe — строб адреса столбца). Поскольку конденсаторы постепенно разряжаются (заряд сохраняется в ячейке в течение нескольких миллисекунд), во избежание потери хранимой информации заряд в них необходимо постоянно регенерировать, отсюда и название памяти — динамическая. На подзарядку тратится и энергия и время, и это снижает производительность системы. Ячейки динамической памяти по сравнению со статической имеют большее время срабатывания (до десятка наносекунд), но большую удельную плотность (до нескольких тысяч Мбит на корпус) и меньшее энергопотребление. Динамическая память используется для построения оперативных запоминающих устройств основной памяти ПК.

Кэш-память

Кэш-память имеет несколько уровней. Уровни L1, L2 и L3 – регистроваякэш-память, высокоскоростная память сравнительно большой емкости, являющаяся буфером между ОП и МП и позволяющая увеличить скорость выполнения операций. Регистры кэш-памяти недоступны для пользователя, отсюда и название кэш (cache), что в переводе с английского означает «тайник». Кэш-память уровня L4 является буфером между НМД и оперативной памятью, она строится либо на основе DRAM, либо на основе флэш-дисков. В современных материнских платах применяется конвейерный кэш с блочным доступом (Pipelined Burst Cache). В кэш-памяти хранятся копии блоков данных тех областей оперативной памяти, к которым выполнялись последние обращения, и весьма вероятны обращения в ближайшие такты работы. Благодаря кэш возможен быстрый доступ к данным и сокращение времени выполнения очередных команд программы. При выполнении программы данные, считанные из ОП с небольшим опережением, записываются в кэш-память. Туда же записываются и результаты операций, выполненных в МП. По принципу записи результатов в оперативную память различают два типа кэш-памяти:

l кэш-память «с обратной записью» - результаты операций прежде, чем их записать в ОП, фиксируются, а затем контроллер кэш-памяти самостоятельно перезаписывает эти данные в ОП;

l кэш-память «со сквозной записью» - результаты операций параллельно записываются и в кэш-память, и в ОП.

МП, начиная от 80486, обладают встроенной в основное ядро МП кэш-памятью (или кэш-памятью 1-го уровня — L1), чем, в частности, и обусловливается их высокая производительность. МП Pentium имеют кэш-память отдельно для данных и отдельно для команд. Емкость этой памяти для МП Pentium и Pentium Pro небольшая — по 8 Кбайт, у следующих версий МП Pentium по 16 Кбайт, а у МП серии Core по 32 Кбайт. У Pentium Pro и выше кроме кэш-памяти 1-го уровня (L1) есть и встроенная на микропроцессорную плату кэш-память 2-го уровня (L2) емкостью от 128 Кбайт до 2048 Кбайт. Эта встроенная кэш-память работает либо на полной тактовой частоте МП, либо на его половинной тактовой частоте.

Следует иметь в виду, что для всех МП используется дополнительная кэш-память 2-го (L2) или 3-го (L3) уровня, размещаемая на СП (вне МП), емкость которой может достигать нескольких мегабайтов (кэш на СП относится к уровню 3, если МП, установленный на этой плате, имеет кэш 2-го уровня). Время обращения к кэш-памяти зависит от тактовой частоты, на которой кэш работает, и составляет обычно 1–2 такта. Так, для кэш-памяти L1 МП Pentium характерно время обращения 2–5 нс, для кэш-памяти L2 и L3 это время доходит до 10 нс. Пропускная способность кэш-памяти зависит от времени обращения, и пропускной способности интерфейса, лежит в широких пределах от 300 до 3000 Мбайт/с. Использование кэш-памяти существенно увеличивает производительность системы. Чем больше размер кэш-памяти, тем выше быстродействие, но эта зависимость нелинейная. Имеет место постепенное уменьшение скорости роста общей производительности компьютера с ростом размера кэш-памяти. Для современных ПК рост производительности, как правило, практически прекращается после 1 Мбайт кэш-памяти L2. Создается кэш-память L1, L2, L3 на основе микросхем статической памяти.

Основная память

При рассмотрении структуры основной памяти можно говорить как о физической структуре, то есть об основных ее конструктивных компонентах, так и о логической структуре, то есть о ее различных областях, условно выделенных для организации более удобных режимов их использования и обслуживания.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)