|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Полевые транзисторы
Полевые транзисторы имеют три электрода: · затвор (аналог «базы» биполярных транзисторов), · исток (аналог «эмиттера»), · сток (аналог «коллектора»). Затвор электрически изолирован от прочих электродов пленкой оксида кремния[13], управляет протеканием тока между истоком и стоком не путем диффузии электронов (как в npn-транзисторах) или дырок (как в pnp-транзисторах), а создаваемым им электростатическим полем. Поэтому МОП транзисторы и называются полевыми. Униполярные транзисторы имеют большее быстродействие, нежели биполярные, ибо механизм их работы не связан с медленными диффузионными процессами. Элементы транзистора размещены на плоской кремниевой подложке (рис. 6.3). Рис. 6.3. Структура полевого транзистора Изменялась и архитектура систем логических элементов. Полевые транзисторы имеют несколько разновидностей: · nМОП · pМОП · МОП с дополнительной симметрией (КМОП-транзисторы — К омплиментарная структура М еталл- О ксид- П олупроводник, CMOS — C omplimentary M etal O xide S emiconductor). Транзисторы nМОП с каналом n-типа работают на основе электронной проводимости. Транзисторы pМОП с каналом p-типа, работают на основе дырочной проводимости. Быстродействие транзисторов несколько выше, чем pМОП, поскольку электроны более подвижны, чем дырки. Униполярный транзистор во включенном состоянии может проводить ток в любом направлении.В настоящее время массовое применение имеют КМОП-транзисторы. Симметрия создается в схемах путем совместного использования nМОП и pМОП-транзисторов. В КМОП-схемах[14] транзисторы nМОП и pМОП по отношению к источнику питания обычно оказываются последовательно включенными, а по отношению к выходному сигналу – параллельно включенными. Поскольку затворы nМОП или pМОП транзисторов включены параллельно, всегда один из этих транзисторов оказывается включенным, а другой — выключенным, и энергопотребление и выходное сопротивление КМОП схемы будет малым (небольшой ток будет протекать только в переходных режимах транзисторов). Затвор транзистора электрически изолирован от истока и стока, управление осуществляется электростатическим полем, поэтому входное сопротивление у полевых транзисторов очень большое. Это обстоятельство создает удобство соединений КМОП-схем между собой и обеспечивает устойчивость их работы. КМОП-схемы имеют меньшее энергопотребление, нежели биполярные транзисторы и другие типы полевых транзисторов, могут более плотно упаковываться; созданные на их основе интегральные схемы могут исполняться в более миниатюрном масштабе микро-технологий. В настоящее время КМОП-транзисторы применяются и в системах оперативной памяти, и в системах флэш-памяти. В модулях оперативной памяти для хранения одного бита информации используется конденсатор — «паразитная» емкость, имеющаяся между электродами транзистора (рис. 6.4.). Величина заряда этой емкости определяет хранимый бит: наличие заряда – «0», отсутствие заряда – «1» (иногда наоборот). Рис. 6.4 Элемент памяти на полевых транзисторах Управление схемой осуществляется: · при записи информации — подачей потенциала на адресную шину 1 и записываемого бита по информационной шине 2, · при считывании информации — подачей потенциала на адресную шину 3 и анализом изменения потенциала на выходной шине 4. Для сохранения заряда емкости необходима постоянная его регенерация с периодом десятки миллисекунд. Поэтому такая память является энергозависимой и называется динамической. Схемы считывания сигнала (рис. 5.4) с шины 4 и схемы регенерации заряда емкости не показаны. Эти схемы могут быть различными и именно их организация определяет тип оперативной памяти: FPM DRAM, DRAM EDO, SDRAM, DR DRAM, DDR SDRAM и др. В КМОП-транзисторах флэш-памяти для обеспечения энергонезависимости под основным затвором помещен еще один, так называемый плавающий затвор (рис. 6.5). Плавающий затвор имеет металлизацию (пленку из арсенида галлия, хрома, никеля, вольфрама и др.) для создания на границе раздела между металлом и полупроводником потенциального барьера Шотки[15], позволяющего хранить заряд конденсатора длительное время. Рис. 6.5 Структура элемента флэш-памяти В появившихся в 2002 году новых видах памяти FeRAM и MRAM используются сверхтонкие магнитные пленки, наносимые на поверхность кремниевой подложки интегральной схемы. Поверх этой пленки, изготовленной из ферроникелиевого сплава - магнитного материала с прямоугольной петлей гистерезиса (ППГ), наносятся еще электроды. Эти электроды создают при пропускании через них электрического тока магнитное поле, намагничивающеемагнитные домены (или иначе, нано- магниты размером примерно 0,1 мкм) этой пленки в нужном направлении для записи кодов «1» и «0» и для считывания информации (рис. 6.6). Рис. 6.6 Кривая намагничивания материала с ППГ Обозначения: H – напряженность магнитного поля, B – магнитная индукция материала, Hc – коэрцитивная сила материала, Bm – максимальная магнитная индукция, Br - остаточная магнитная индукция. При подаче положительного импульса H, превышающего Hc, материал намагничивается до значения Bm, превышающего Br. После снятия внешнего поля H материал возвращается в состояние Br (запись 1). При подаче отрицательного импульса H, превышающего -Hc, материал намагничивается до значения -Bm. После снятия отрицательного импульса -H материал возвращается в состояние -Br (запись «0»). При считывании подается отрицательный импульс H, и скорость изменения магнитной индукции материала формирует электронный импульс, амплитуда напряжения которого у выхода равно: При считывании «0» DB - минимально, и электрический импульс практически не возникает. При считывании «1» DB =Br-(-Br) = 2Br, DB большое, формируется импульс, кодирующий 1. ПРИМЕЧАНИЕ Магнитные материалы с прямоугольной петлей гистерезиса используются во всех внешних запоминающих устройствах на магнитных и магнито-оптических дисках, магнитных лентах и в ОЗУ на магнитных сердечниках. Планарные микросхемы Изготавливаются интегральные схемы с МОП-транзисторами по планарной технологии: на поверхность пластины из полупроводника (кремния) наносится защитный слой диэлектрика (обычно путем окисления поверхности для образования пленки из двуокиси кремния), в котором методами фотолитографии вскрывают микро-окна. Поверх слоя диэлектрика наносится металлическая пленка, имеющая в окнах контакт с поверхностью полупроводника. Через окна для создания электронно-дырочных переходов нужной (n или p) полярности проводится диффузия[16] материалов-доноров или акцепторов-электронов. Так как кремний — четырехвалентный химический элемент, то для образования p-областей используются трехвалентные материалы (бор, галлий, алюминий), а для создания n-областей — пятивалентные материалы (сурьма, мышьяк, фосфор). Весьма перспективна разработанная в университете Баффало технология использования «самоорганизующихся» химических веществ — материалов с микроскопическими структурами («квантовыми точками») при изготовлении полупроводниковых приборов. По данным исследователей, из названных веществ даже при комнатной температуре самопроизвольно происходит реакция, приводящая к созданию регулярных микроскопических структур с ячейками диаметром 0,04 мкм (механизм образования таких структур подобен образованию эмульсии в жидкости). Параметры транзисторов зависят от масштаба технологического процесса их изготовления (масштаба технологии), который непрерывно уменьшается. Еще несколько лет назад использовались 0,15 - 0,11 мкм технологии, а в 2007 году уже начали использоваться 0,045 мкм технологии. В 2003 году концерн IBM предложил комбинированную микросхему, в которой на одну и ту же подложку «кремний на изоляторе» (SOI) помещают одновременно и биполярные, и полевые транзисторы. Такая схема обладает меньшим энергопотреблением, а комбинированные чипы по технологии 0,065 мкм стали выпускаться в 2005 году. Уменьшение размеров транзисторов повышает плотность их размещения, уменьшает паразитные индуктивности и емкости электродов и позволяет повысить рабочую частоту микросхемы. Но при этом миниатюризация транзисторов (в ряде случаев толщина изолирующих слоев в транзисторе сопоставима с размерами атомов) приводит к росту паразитных токов утечки, что, в свою очередь, повышает энергопотребление и снижает устойчивость работы схемы. Снижение напряжения питания схемы уменьшает разогрев схем только частично, а мощность токов утечки может достигать сотен ватт. Уменьшение токов утечки достигается следующими способами: использование медных проводников (вместо алюминиевых, имеющих большее удельное электрическое сопротивление); применение технологии напряженного (растянутого) кремния — strained Si (увеличение расстояния между атомами кристаллической решетки уменьшает удельное электрическое сопротивление). ПРИМЕЧАНИЕ В современных микросхемах толщина изолирующего слоя из диоксида кремния (SiO2) составляет всего 1,2 нанометра, то есть имеет толщину примерно 5-ти атомов, то ток утечки сравнительно велик и тепловыделение значительное (по оценкам экспертов почти 40% тепловыделения обусловлено утечками). Для улучшения электрических характеристик фирма Intel намерена заменить оксид кремния оксинитридом кремния (SiON) с другой диэлектрической проницаемостью. Новая технология (под кодовым номером 1266) с масштабом 0,045 мкм на базе 300 мм подложек, медных соединений и напряженного кремния намечено освоить в 2007 году. В таблице 6.2 приведены кодовые номера технологических процессов и их некоторые характеристики. Таблица 6.2 Кодовые номера технологических процессов изготовления транзисторов Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |