АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тепловые явления процесса резания

Читайте также:
  1. I. Торможение процесса модернизации в Японии
  2. Активаторы процесса коррозии и ускорение разрушения металлов
  3. Актуальные проблемы организации учебно-воспитательного процесса в современной школе
  4. Анализ бизнес-процесса предприятия «Звезда»
  5. Анкетирование родителей для выявления уровня знаний о заболевании
  6. Атеросклероз. Факторы риска развития атеросклероза. Ишемическая болезнь сердца (ИБС). Клинические проявления ИБС.
  7. Ая фаза от начала открытия сфинктера Одди до появления темной пузырной желчи.
  8. Б. Тепловые расчеты.
  9. В 2. Методы выявления дефектов, выходящих на пов-ть.
  10. В 2. Методы выявления скрытых дефектов
  11. В 4. Характеристика процесса горения. Виды горения. Горючие вещества Взрывопожароопасные свойства ГВ.
  12. В частности, несоответствие волеизъявления и воли имеет место в случаях: а) мысленной оговорки, б) шутки, вообще несерьезного изъявления воли и в) симуляции.

При резании вся механическая работа превращается в тепловую энергию. Количество теплоты Q, выделяющееся при резании в единицу времени (тепловая мощность), определяется по формуле:

, Дж,
где РZ- сила резания, V- скорость резания.
Образующееся в зоне резания тепло распределяется между заготовкой, стружкой, режущим инструментом и окружающей средой.
Причинами образования теплоты являются упругопластическое деформирование в зоне стружкообразования, трение стружки о переднюю поверхность инструмента, трение задних поверхностей инструмента о заготовку. Тепловой баланс процесса резания можно представить следующим тождеством:

где: QД – количество теплоты, выделяющейся при упругопластическом деформировании обрабатываемого материала;
QП.П – количество теплоты, выделяющейся при трении стружки о переднюю поверхность инструмента;
QЗ.П. – количество теплоты, выделяющейся при трении задних поверхностей инструмента о заготовку;
QС – количество теплоты, отводимое стружкой;
QИ – количество теплоты, отводимое режущим инструментом;
QЛ – количество теплоты, переходящее в окружающую среду (теплота лучеиспускания).
По данным многих исследований, количество теплоты, отводимое стружкой, составляет (25-85)% всей выделяющейся теплоты, заготовкой (10-50)%, режущим инструментом (2-8)%. Количественное распределение теплоты зависит главным образом от скорости резания (рис.4). С увеличением скорости резания отводимое стружкой тепло увеличивается, а заготовкой, инструментом, окружающей средой – уменьшается.

Рис.4. Распределение теплоты резания в зависимости от скорости резания
Соотношение членов в уравнении теплового баланса не постоянны и изменяются в зависимости от физико-механических свойств обрабатываемого материала, условий резания и материала инструмента, условий обработки и др.
Увеличение подачи S повышает температуру в зоне резания, но менее интенсивно, чем при увеличении скорости резания V. Еще меньшее влияние на температуру оказывает глубина резания t.
Влияние геометрии резца:
1.С увеличением угла резания и угла в плане температура в зоне резания возрастает.
2.С увеличением радиуса закругления при вершине температура в зоне резания уменьшается.
Теплообразование отрицательно влияет на процесс обработки. Обработка должна производится без перегрева режущего инструмента. Так для работы инструмента из углеродистой стали температура в зоне резания не должна превышать (200-250)град C, из быстрорежущей стали (550-600) град C, инструментом, оснащенным твердыми сплавами – (800-1000) град C, а минералокерамикой – (1000-1200) град C; абразивными материалами – (1800-2000) град C. Нагрев инструмента выше указанных температур вызывает структурные превращения в материале, из которого инструмент изготовлен, снижение его твердости и потерю его режущих способностей. Также происходит изменение геометрических размеров инструмента, что влияет на точность размеров и геометрическую форму обработанных поверхностей. Нагрев заготовки вызывает изменение ее геометрических размеров. Вследствие жесткого закрепления заготовки на станке она начинает деформироваться. А это приведет к снижению точности обработки.

 


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)