АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Цель работы

Читайте также:
  1. I. КУРСОВЫЕ РАБОТЫ
  2. I. ОБЩИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ
  3. II. ДИПЛОМНЫЕ РАБОТЫ
  4. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  5. II. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КУРСОВОЙ РАБОТЫ
  6. III. Задания для самостоятельной работы по изучаемой теме.
  7. III. Задания для самостоятельной работы по изучаемой теме.
  8. III. Задания для самостоятельной работы по изучаемой теме.
  9. III. Задания для самостоятельной работы по изучаемой теме.
  10. III. Задания для самостоятельной работы по изучаемой теме.
  11. III. Задания для самостоятельной работы по изучаемой теме.
  12. III. Требования охраны труда во время работы

 

Цель данной работы состоит в приобретении студентами навыков практических расчетов погрешностей при измерениях осциллографом, изучить устройство лабораторной установки МСИ 3м и дать предложения по использованию в установке МСИ 3м измерений с помощью осциллографа совместно с мультиметром.

 

41.1.1Методы измерения величин с применением осциллографа

 

Магнитные измерения составляют достаточно объёмную часть всей электроизмерительной техники. Объясняется это все более широким использованием магнитных явлений в науке и технике, значительным ростом выпуска ферромагнитных материалов (ФММ) и применением их в электротехнических устройствах, приборах и автоматике.

В основе классификации методов магнитных измерений лежит физическая сущность явлений, используемых для измерительного процесса, т.е. преобразование магнитной величины в электрический сигнал.

Магнитно-мягкие материалы характеризуются магнитными параметрами, измеряемыми в постоянном и переменном полях. Основными измеряемыми характеристиками, в постоянных полях для МММ являются: основные кривая намагничивания, предельная петля гистерезиса и её параметры (Вг Нс), начальная и максимальная магнитные проницаемости. ГОСТ 8.377 - 80 устанавливает в качестве основного баллистический метод исследования свойств материала. В настоящее время в связи с разработкой промышленностью унифицированных электронных устройств широкого применения получил распространение метод непрерывного медленно изменяющего поля.

В переменных полях основными характеристиками МММ являются основная динамическая кривая намагничивания, динамическая петля гистерезиса, комплексная магнитная проницаемость и удельные потери. Кроме того, в зависимости от частотного диапазона испытания существует ещё целый ряд определяемых характеристик и параметров. Наиболее часты испытания МММ в частотном диапазоне 50 Гц - 10 кГц. Основными методами испытания в этом диапазоне частот являются: индукционный с использованием амперметра, вольтметра, ваттметра; индукционный с использованием фазочувствительных приборов (феррометрический); индукционный с использованием потенциометра переменного тока; индукционный с использованием феррогафа визуально-измерительных методов - осциллографический; индукционный с использованием стробоскопических преобразователей; параметрический (мостовой).

Осциллографическим способом пользуются для измерения и визуального наблюдения основной динамической кривой намагничивания, семейства симметричных петель гистерезиса, потерь в образцах на частотах от 50 до 500 Гц. К недостаткам способа следует отнести необходимость замеров на экране осциллографа, что связано с увеличением объективных и субъективных погрешностей отсчёта.

Наиболее точным из индукционных методов испытания МММ является потенциометрический, основанный на измерении сигналов, пропорциональных В и Н, с помощью потенциометров переменного тока. Этим способом определяются зависимость магнитной индукции от напряжённости магнитного поля, составляющие комплексной магнитной проницаемости, полные потери. Достоинствами способа являются высокая точность измерения и широкий диапазон измеряемых величин. К недостаткам относятся: длительность процесса измерения, высокая стоимость используемой аппаратуры и её сложность.

Сущность стробоскопического способа измерения заключается в том, что исследуемые периодически изменяющиеся сигналы произвольной формы умножаются на так называемый строб-импульс. При этом перемножение в каждом последующем периоде происходит со сдвигом во времени на некоторый интервал (шаг считывания) по отношению к предыдущему. В результате можно произвести и затем воспроизвести считывание всего периода исследуемого сигнала по точкам. Это даёт возможность подобно феррометрическому способу использования для регистрации быстроизменяющихся процессов инерционных самопишущих и цифропечатающих приборов. Основным достоинством стробоскопического способа измерения является возможность получения документальной информации о характеристиках ФММ в процессе перемагничивания последних.

Существуют и другие методы испытания МММ в динамическом режиме перемагничивания, однако технико-эксплуатационные характеристики устройств на их основе не эффективны в условиях массовых испытаний. Однако наиболее наглядным методом испытания МММ с применением других сочетаний является осциллографический метод, поэтому мы останавливаемся на рассмотрении средств измерений - типы осциллографов.

41.1.2 Многообразие применения осциллографов

 

Осциллографы используют для наблюдения и записи быстро протекающих процессов.

По принципу действия осциллографы бывают трех типов:

1) электромеханический;

2) электронный;

3) электронно-лучевой.

Электромеханический осциллограф состоит из следующих узлов: вибраторов, оптической системы, приспособления для наблюдения и фотографирования исследуемого тока. Вибратор представляет собой натянутую бронзовую ленточку в виде петли и находится в поле постоянного магнита. Ток, проходящий по петле, взаимодействует с полем постоянного магнита, в результате чего появляется вращающий момент, под действием которого петля и прикрепленное к ней зеркальце повернуться в ту или иную сторону в зависимости от направления тока в петле, а угол отклонения будет пропорционален мгновенному значению тока. Луч света от лампы через диафрагму и фокусирующую линзу попадает на зеркальце вибратора. Отраженный от него луч через фокусирующую линзу падает на поверхность движущейся светочувствительной бумаги или кинопленки. Часть луча света с помощью призмы отбрасывается на вращающийся многогранный зеркальный барабан и отражается от него на матовый экран. При одновременном движении луча света, отраженного от колеблющегося зеркальца, и равномерном вращении барабана луч света вычертит на экране кривую исследуемого тока.

Осциллографы могут иметь несколько десятков вибраторов для одновременной записи нескольких различных процессов на фотобумаге (кинопленке), скорость движения которой устанавливается в пределах от 1 до 5000 мм/с. Электромеханические осциллографы могут записывать процессы с частотой от нуля до 5 - 10 кГц.

Электронный осциллограф позволяет наблюдать периодические процессы с частотой до сотен мегагерц. Основной частью осциллографа является вакуумная электронно-лучевая трубка. Под действием тока накала катод К излучает электроны, которые с помощью сетки и анодов А1 и А2 формируются в электронный луч и направляются на экран, покрытый слоем люминофора. Измеряемое напряжение прикладывается к паре горизонтально расположенных пластин; вторая пара пластин расположена вертикально, и к ней приложено периодически изменяющееся во времени линейное напряжение «развертки». Если частоты периодических напряжений совпадают, то светлое пятно на экране за время Т будет следовать с постоянной скоростью по горизонтали и одновременно смещаться по вертикали под действием напряжения, прочерчивая в результате кривую исследуемого напряжения.

Электронно-лучевой осциллограф используется для визуального наблюдения, измерения и регистрации формы и параметров электрических сигналов в диапазоне частот от постоянного тока до десятков мегагерц. К ним могут быть отнесены электромеханические осцил­лографы (так называемые «шлейфовые») и разного рода самописцы и большая группа приборов с электронно-лучевой трубкой — электронно­лучевые осциллографы (ЭЛО).

Электронно-лучевой осциллограф - один из наиболее универсальных измерительных приборов для визуального наблюдения электрических сигналов и измерения их параметров. Разработаны и используются раз­личные типы электронно-лучевых осциллографов: универсальные, ско­ростные, стробоскопические, запоминающие и специальные. Возмож­ность наблюдения формы исследуемого сигнала и одновременное изме­рение его параметров выдвигают электронно-лучевой осциллограф в разряд универсальных приборов.

На основе совершенствования первоначальной схемы универсально­го осциллографа (его обозначение С1 —...) создан целый ряд специали­зированных приборов:

- С7 —... скоростные стробоскопические;

- С8—...запоминающие;

- С9 —... специальные, в том числе цифровые.

Иногда эти разновидности бывают объединены в одном приборе. Выбор маркировки зависит от разработчика.

Самые распространенные универсальные осциллографы позволяют ис­следовать разнообразные электрические сигналы с длительностью от единиц наносекунд до нескольких секунд в диапазоне от долей милли­вольт до сотен вольт. Полоса пропускания лучших универсальных ос­циллографов составляет 300...400 МГц. Изображение сигнала на экране индицируется практически одновременно с появлением сигнала на вхо­де, поэтому такие приборы называют осциллографами реального време­ни. Часто универсальные осциллографы выполняют со сменными бло­ками, расширяющими их функциональные возможности.

Электронно-лучевые осциллографы обладают высокой чувствительностью и малой инерционностью, подразделяются на универсальные, запоминающие, специальные и др., могут быть одно-, двух- и многолучевыми.

В настоящее время существует огромное количество моделей осциллографов. Рассмотрим некоторые из них.

Осциллограф АКТАКОМ АСК- 1021 с шириной полосы пропускания 25 МГц

Данный осциллограф является прибором лабораторного типа. Простота в обращении и высокая надежность делают его идеальным прибором с превосходными характеристиками для широкого спектра измерений, необходимых в исследованиях, производстве, в сфере образования и во многих других сферах применения.

Осциллограф С8 - 33

Осциллограф двухканальный цифровой запоминающий С8 - 33 предназначен для оперативного исследования однократных сигналов с максимальной частотой дискретизации 20 Мвыбси периодических сигналов с максимальным временем разрешения 100 пс в полосе частот от 0 до 20 МГц размахом от 10 мВ до 16 В (до 160 В с внешним делителем 1:10) путем регистрации их в цифровой памяти, отображения на экране электронно-лучевой трубки и цифрового измерения амплитудных и временных параметров. В осциллографе устанавливается интерфейс для устройств с последовательным обменом информацией в соответствии с рекомендациями. Область применения осциллографа: ремонт, наладка, эксплуатация различных электронных приборов и узлов автоматики, вычислительной техники, связи, сложной электронной техники, научные исследования.

Осциллограф универсальный С1-65

Осциллограф универсальный С1-65 предназначен для исследования формы электрических сигналов путем визуального наблюдения и измерения их амплитудных и временных параметров в цеховых, лабораторных и полевых условиях эксплуатации.

Прибор удовлетворяет требованиям ГОСТ 22261-94, нормалей НО.005.026-030, а по условиям эксплуатации приборов к 7 группе нормали НО.005.026.

 

Осциллограф С1-104

 

Осциллограф универсальный С1-104 предназначен для визуального наблюдения и измерения параметров периодических и однократных электрических процессов в диапазоне частот от постоянного тока до 500 МГц путем:

- измерения амплитудных и временных параметров исследуемого
сигнала в диапазоне от 0,04 до 8 В, с выносным делителем 1:10 И22. 727.
082 - до 10 В, с активным пробником И22.746. 036 - до 24 В и временных
интервалов в диапазоне от 4 10 9 до 0,5 с;

- одновременного изображения двух исследуемых сигналов на одной
развертке.

Осциллограф предназначен для работы в лабораторных и цеховых условиях и может использоваться для исследовательских, поверочных и ремонтных работ.

По метрологическим характеристикам осциллограф С1 – 104 соответствует II классу точности.

Осциллограф – мультиметр С1 – 155

 

Осциллограф-мультиметр С1 – 155 предназначен для визуального наблюдения, электрических сигналов.

Прибор позволяет измерять как периодические, так и однократные электрические сигналы. Имеет встроенный интерфейс RS – 322 и встроенный мультиметр.

Создание прибора преследует цель заменить устаревший парк универсальных запоминающих осциллографов, повысить удобство их эксплуатации, уменьшить погрешность измерений амплитудно-временных параметров исследуемых сигналов при существенном снижении массы, габаритов и потребляемой мощности.

 

Осциллограф универсальный С1 – 77

 

Универсальный осциллограф С1 – 77 предназначен для исследования формы электрических сигналов путем визуального наблюдения в диапазоне частот от 0 до 10 МГц, измерения размахов в диапазоне от 0,01 до 200 В и временных интервалов от 0,08*10"6 до 0,4 с.

Наличие двух каналов вертикального отклонения обеспечивает одновременное исследование двух сигналов на одной развертке.

Осциллограф относится ко II классу точности.

Осциллограф предназначен для использования при разработке, настройке и регулировке радиоэлектронной аппаратуры в лабораторных, цеховых и полевых условиях.

 

Осциллограф С1 – 125

 

Осциллограф С1 – 125 предназначен для исследования формы периодических электрических сигналов путем визуального наблюдения их формы, измерения амплитуды и временных параметров методом калиброванной шкалы.

Двухканальный осциллограф С1 – 125 с полосой пропускания 10 Мгц отличается компактной конструкцией, небольшой массой и простотой управления.

Имеет повышенную надежность, прост по конструкции в эксплуатации. Применяется при проектировании, наладке и ремонте электронной аппаратуры в лабораторных, цеховых и полевых условиях.

 

Осциллограф С1 – 159

 

Осциллограф С1 – 159 предназначен для наблюдения и измерения электрических сигналов в реальном масштабе времени в диапазоне напряжений от 8 мВ до 60 В и длительностей от 80 не до 0,2 с в полосе частот от 10 Гц до 10 мГц. Может применяться при производстве, разработке и эксплуатации радиоэлектронных изделий, а также в ходе учебного процесса в школах, вузах по курсам электротехники, электроники и.т. д.

 

Осциллограф С8 – 23

 

Осциллограф предназначен для исследования и измерения периодических сигналов в полосе частот 0-20 МГц и однократных сигналов, регистрируемых с максимальной частотой дискретизации 1 МГц. Прибор обеспечивает цифровое запоминание, цифровое измерение напряжения в диапазоне амплитуд от 5 мВ (с активным пробником - от 5 мВ) до 80 В (с делителем - до 200 В) и временных интервалов в диапазоне длительностей от 200 не до 8000 с. Кроме этого, производится автоматическая обзорная установка размеров изображения в пределах рабочей части экрана, автоматическое измерение размаха, периода и длительности с выводом результатов измерения на экран электронно­лучевой трубки.

Осциллограф имеет самодиагностику и выход в канал общего пользования (КОП). Размеры рабочей части электронно-лучевой трубки оставляют 80 мм (10 делений) по горизонтали и 60 мм (8 делений) по вертикали.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)