|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Рассмотрим особенности моделирования случайных событийПусть имеются случайные числа xi, т.е. возможные значения случайной величины x, равномерно распределённой в интервале {0,1}. Необходимо реализовать случайное событие А, наступающее с заданной вероятностью Р. Определим А как событие, состоящее в том, что выбранное значение xi удовлетворяет неравенству: xi£Р (1) Тогда вероятность события А будет: Таким же образом можно рассмотреть группу событий. Пусть А1, А2…Аn – полная группа событий, наступающая с вероятностями Р1, Р2, … Рn соответственно. Определим Аm как событие, состоящее, в ом, что выбранное значение xi случайной величины x удовлетворяет неравенству: lm-1<xi<lm, где Тогда При моделировании систем часто необходимо осуществить такие испытания, при которых искомый результат является сложным событием, зависящим от 2-х и более простых. Пусть например, независимые события А и В имеют вероятности наступления РА и РВ. Возможными исходами совместных испытаний в этом случае будут события Рассмотрим случай, когда события А и В являются зависимыми и наступают с вероятностями РА и РВ. Обозначим через Р(В/А) условную вероятность события В при условии, что событие А произошло. Считаем, что Р(В/А) задана. Из последовательности случайных чисел {Xi} извлекается определённое число xm и проверяется справедливость неравенства xm<PA. Если это неравенство справедливо, то наступило событие А. Для испытания, связанного с событием В используется вероятность Р(В/А). Из совокупности чисел {Xi} берётся очередное число xm+1 и проверяется условие xm+1£ Р(В/А). В зависимости от того выполняется или нет это неравенство, исходом испытания является АВ или
Выберем из совокупности {Xi} число xm+1 и проверим справедливость неравенства
Рис.7.1. Схема моделирования группы случайных событий Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (2.07 сек.) |