АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Потенциальная энергия заряда. Эквипотенциальные поверхности

Читайте также:
  1. В схеме, состоящей из конденсатора и катушки, происходят свободные электромагнитные колебания. Энергия конденсатора в произвольный момент времени t определяется выражением
  2. Взаимодействие зарядов. Закон Кулона. Закон сохранение электрического заряда.
  3. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.
  4. Взаимодействие заряженных тел. Электрический заряд. Закон сохранения заряда. Закон Кулона.
  5. Внутренняя энергия идеального газа
  6. Внутренняя энергия идеального газа. Работа газа при изобарном расширении. Применение первого начала термодинамики к изопроцессам. Понятие о втором начале термодинамики.
  7. Внутренняя энергия реального газа
  8. Внутренняя энергия реального газа. Эффект Джоуля - Томсона
  9. Внутренняя энергия тела и способы её изменения. Изменение внутренней энергии тела при нагревании. Первое начало термодинамики. Обратимые и необратимые процессы.
  10. Внутренняя энергия. Количество теплоты. Работа в термодинамике
  11. Вопрос 29 Энергия электростатического поля
  12. Вопрос 42 Энергия магнитного поля тока

В одной точке электростатического поля разные заряды могут обладать различной потенциальной энергией, но отношение потенциальной энергии Wp к заряду q для данной точки поля оказывается постоянной величиной. Эту величину принимают за энергетическую характеристику данной точки поля.

Физическая величина, равная отношению потенциальной энергии электрического заряда в электрическом поле к заряду, называется потенциалом φ электрического поля:

.

Отсюда потенциальная энергия Wp заряда в электростатическом поле равна произведению заряда q на потенциал φ электрического поля в данной точке:

.

Значение потенциальной энергии электрического заряда в данной точке электрического поля определяется не только характеристиками электрического поля, но и знаком заряда, помещенного в данную точку поля, и выбором нулевого уровня отсчета потенциальной энергии.

Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью.

Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю, поэтому работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности электростатического поля перпендикулярны эквипотенциальной поверхности.

Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд (рис. 136).

 

Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности (рис. 137).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)