АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Напряженность поля заряженной плоскости
Рассмотрим бесконечную плоскость, заряженную равномерно с поверхностной плотностью заряда . Электрическое поле такой поверхности однородно, причём силовые линии перпендикулярны поверхности. Чтобы найти напряжённость поля, воспользуемся теоремой Гаусса. Для этого построим замкнутую цилиндрическую поверхность, ось которой параллельна силовым линиям поля, а основания площадью S находятся по разные стороны от поверхности. Поток напряжённости через боковую поверхность цилиндра равен нулю, т.к. силовые линии её не пересекают. Поэтому полный поток напряжённости через выбранную поверхность равен сумме потоков через основания цилиндра: N = 2 • ЕS. Полный заряд внутри цилиндра равен Q = S. Согласно теореме Гаусса, Отсюда напряжённость электрического поля
Итак, напряжённость электрического поля заряженной плоскости равна поверхностной плотности заряда, делённой на удвоенное значение электрической постоянной. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | Поиск по сайту:
|