АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос. Множества и операции над ними

Читайте также:
  1. I. Психологические операции в современной войне.
  2. V2: ДЕ 11 - Векторные пространства. Линейные операции над векторами
  3. V2: ДЕ 4 – Линейные отображения. Линейные операции над матрицами
  4. Активные операции коммерческих банков: понятие, значение, характеристика видов
  5. Арифметические выражения и операции
  6. Арифметические операции
  7. Арифметические операции и выражения
  8. Арифметические операции над двоично-десятичными числами
  9. Арифметические операции языка С
  10. Арифметические операции.
  11. Б. Операции на рынке иностранной валюты
  12. Баланс ЦБ- золото, иностранная валюта, наличные деньги в кассах, кредиты МинФину, операции с ценными бумагами, кредиты, межгосударственные расчеты.

Множество – совокупность некоторых объектов. Примерами множеств являются множества чисел, множества точек прямой, множество линий и др. Каждое отдельное множество задается правилом или законом, позволяющим судить, принадлежит объект данному множеству или нет.

Множества обозначаются прописными буквами латинского или готического алфавита: A, B,...,M, K,.... Если множество A состоит из элементов a,b,c,..., это обозначается с помощью фигурных скобок: A={a,b,c,...,}. Если a есть элемент множества A, то это записывают следующим образом: a О A. Если же a не является элементом множества A, то пишут a П A. Одним из важных множеств является множество N всех натуральных чисел N={1,2,3,...,}. Существует также специальное, так называемое пустое множество, которое не содержит ни одного элемента. Пустое множество обозначается символом Ж.

Условимся вводить определение, когда это будет удобно, посредством следующего символа: = (равенства по определению), двоеточие ставится со стороны определяемого объекта.

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.

Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.

Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.

Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.

Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).

Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)