АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Функции двух переменных

Читайте также:
  1. II. Основные задачи и функции
  2. III. Предмет, метод и функции философии.
  3. IV. Конструкция бент-функции
  4. Ms Excel: мастер функций. Логические функции.
  5. V2: ДЕ 29 - Введение в анализ. Предел функции на бесконечности
  6. V2: ДЕ 32 - Дифференциальное исчисление функции одной переменной. Производная
  7. V2: ДЕ 35 - Дифференциальное исчисление функции одной переменной. Производные высший порядков
  8. V2: ДЕ 39 - Интегральное исчисление функции одной переменной. Приложения определенного интеграла
  9. V2: Функции исторической науки
  10. VIII. ФУНКЦИИ НАУЧНОГО ИССЛЕДОВАНИЯ
  11. XVIII. ПРОЦЕДУРЫ И ФУНКЦИИ
  12. А) ПЕРЕДАЧА НА РУССКОМ ЯЗЫКЕ ФУНКЦИИ АРТИКЛЯ

Дифференциальное исчисление функций многих переменных

 

Функции двух переменных.

 

Понятие функции одной переменной не охватывает все зависимости, существующие в природе. Даже в самых простых задачах встречаются величины, значения которых определяются совокупностью значений нескольких величин.

Пример 1. Площадь S прямоугольника со сторонами, длины которых равны х и у, выражается формулой S = xy, т.е. значение S определяется совокупностью значений х и у.

Пример 2. Объем V прямоугольного параллелепипеда с ребрами, длины которых равны х, у, z, выражается формулой V = xyz, т. е. значение V определяется совокупностью значений x, y и z.

Математической моделью подобных зависимостей является понятие функции нескольких переменных.

Определение 1. Переменная z называется функцией двух переменных x и y, если по некоторому вполне определенному закону упорядоченным парам чисел (x, y) из некоторого множества D ставится в соответствие вполне определенное значение z.

 

Тот факт, что переменная z является функцией переменных х и у, обозначается так: z = f(x,y) или z = g(x,y) и т.д., при этом буквой f (или g) символически обозначают то правило, по которому данной паре чисел (х, у) ставится в соответствие число z. Переменные х и у называются независимыми переменными или аргументами. Если паре чисел (х0,у0) соответствует число z0, то оно называется значением функции z = f(x,y) и обозначается z0 = f(х0,у0). Поскольку пару действительных чисел (x,y) можно рассматривать как декартовы координаты некоторой точки Р плоскости Оху, то о функции z = f(x,y) часто говорят, что z есть функция точки Р(x,y) и пишут z = f(Р).

Функция z = f(x,y) может быть задана аналитически (формулой) или каким-либо иным способом: например, в виде таблицы, в виде какой-либо словесной формулировки, графически и т. д.

Определение 2. Множество пар (х,у), для которых определено значение z функции z = f(x,y), называется областью определения данной функции.

Область определения функции, заданной явно с помощью формулы, определяется самой формулой.

Пример 3. Найти область определения функции z = ln( 1 - x 2 - y 2 ).

Решение. Логарифмическая функция определена только для положительных аргу­мен­тов, поэтому x2 + y2 < 1. Последнее нера­венство задает область определения данной функции. На плоскости Оху ему соответствует внутренность круга радиуса 1 с центром в начале координат.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)