АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Интерполяция и экстраполяция

Читайте также:
  1. Интерполирование (интерполяция).
  2. Интерполяция табличных данных
  3. Линейная двухпараметрическая интерполяция
  4. Линейная и квадратичная однопараметрическая интерполяция.
  5. Сплайн интерполяция.

Полученные аналитические зависимости с рассчитанными параметрами позволяют не только выявить тенденцию динамического ряда, но и определить его неизвестные промежуточные значения. Данная задача решается способом интерполяции.

Интерполяция заключается в приближенном отражении сложившейся закономерности внутри определенного отрезка времени – в отличие от экстраполяции, которая требует выхода за пределы этого отрезка времени.

Экстраполяция – метод определения количественных характеристик для совокупностей и явлений, не подвергшихся наблюдению, путем распространения на них результатов, полученных из наблюдения над аналогичными совокупностями за прошедшее время, на будущее.

Формулы для определения значений коэффициентов линейных и нелинейных уравнений, описывающих изменение рассматриваемого показателя во времени и характеризующих тенденцию динамического ряда y=f(t) имеют вид:

Для прямой

для параболы

для экспоненты вида

y= b0 + b1/t

система уравнений для определения коэффициентов уравнения регрессии имеет вид:

для функции вида

для функции вида

 

       
   

 


Y=a0+a1/x

 

 
 
линейная


гипербола

 

       
   
 
 

 


Y=ax

       
 
 
   
парабола
 


показательная

 

           
   
 
 
   

 

 


ТАБЛИЦА ВЫЧИСЛЕНИЯ ЗНАЧЕНИЙ ПО РЯДУ ФУРЬЕ

t Yi cos t cos 2t sin t sin 2t
           
  Y1        
π/6 Y2 0,866 0,5 0,5 0,866
π/3 Y3 0,5 -0,5 0,866 0,866
π/2 Y4   -1    
2π/3 Y5 -0,5 -0,5 0,866 -0,866
5π/6 Y6 -0,866 0,5 0,5 -0,866
π Y7 -1      
7π/6 Y8 -0,866 0,5 -0,5 0,866
4π/3 Y9 -0,5 -0,5 -0,866 0,866
3π/2 Y10   -1 -1  
5π/3 Y11 0,5 -0,5 -0,866 -0,866
11π/6 Y12 0,866 0,5 -0,5 -0,866

Для изучения сезонности как периодической функции Фурье за n берется число месяцев года, тогда ряд динамики по отношению к значениям определится в виде следующих значений Y (1и2 столбцы).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)