АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение прямой в пространстве, проходящей

Читайте также:
  1. V2: Волны. Уравнение волны
  2. V2: Уравнение Шредингера
  3. Адиабатический процесс. Уравнение адиабаты (Пуассона). Коэффициент Пуассона.
  4. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  5. Аналитический отчет о движении денежных средств корпорации (прямой метод)
  6. Атака – прямой левой в лицо.
  7. В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  8. В отделение проктологии поступил больной с жалобами на кровотечение из стенок прямой кишки.
  9. В простом случае обычное дифференциальное уравнение имеет вид
  10. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  11. Волна вероятности. Уравнение Шредингера
  12. Волновая функция.Уравнение Шредингера

через две точки.

 

Если на прямой в пространстве отметить две произвольные точки M1(x1, y1, z1) и M2(x2, y2, z2), то координаты этих точек должны удовлетворять полученному выше уравнению прямой:

.

Кроме того, для точки М1 можно записать:

.

Решая совместно эти уравнения, получим:

.

Это уравнение прямой, проходящей через две точки в пространстве.

 

 

Общие уравнения прямой в пространстве.

 

Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей.

Как было рассмотрено выше, плоскость в векторной форме может быть задана уравнением:

× + D = 0, где

- нормаль плоскости; - радиус- вектор произвольной точки плоскости.

Пусть в пространстве заданы две плоскости: × + D1 = 0 и × + D2 = 0, векторы нормали имеют координаты: (A1, B1, C1), (A2, B2, C2); (x, y, z).

 

Тогда общие уравнения прямой в векторной форме:

Общие уравнения прямой в координатной форме:

 

Практическая задача часто состоит в приведении уравнений прямых в общем виде к каноническому виду.

Для этого надо найти произвольную точку прямой и числа m, n, p.

 

При этом направляющий вектор прямой может быть найден как векторное произведение векторов нормали к заданным плоскостям.

 

Пример. Найти каноническое уравнение, если прямая задана в виде:

 

Для нахождения произвольной точки прямой, примем ее координату х = 0, а затем подставим это значение в заданную систему уравнений.

, т.е. А(0, 2, 1).

 

Находим компоненты направляющего вектора прямой.

Тогда канонические уравнения прямой:

 

Пример. Привести к каноническому виду уравнение прямой, заданное в виде:

 

Для нахождения произвольной точки прямой, являющейся линией пересечения указанных выше плоскостей, примем z = 0. Тогда:

;

2x – 9x – 7 = 0;

x = -1; y = 3;

Получаем: A(-1; 3; 0).

Направляющий вектор прямой: .

 

Итого:

 

 

Угол между плоскостями.

 
 

 

 


j1

j 0

 

 

Угол между двумя плоскостями в пространстве j связан с углом между нормалями к этим плоскостям j1 соотношением: j = j1 или j = 1800 - j1, т.е.

cosj = ±cosj1.

Определим угол j1. Известно, что плоскости могут быть заданы соотношениями:

, где

(A1, B1, C1), (A2, B2, C2). Угол между векторами нормали найдем из их скалярного произведения:

.

Таким образом, угол между плоскостями находится по формуле:

 

Выбор знака косинуса зависит от того, какой угол между плоскостями следует найти – острый, или смежный с ним тупой.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)