|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Методы вычисления ранга матрицыМетод упрощения матрицы с помощью элементарных преобразований. Упрощения производятся с использованием свойств ранга матрицы. Как и в случае с определителями, можно, например, с помощью 1-й строки занулить все элементы первого столбца кроме одного – верхнего. Далее с помощью второй строки занулить все элементы второго столбца кроме двух верхних и т.д., пока матрица не приведётся к ступенчатому виду. Метод окаймления. Ищется минор порядка , заведомо отличный от нуля. Затем вычисляются все окаймляющие (т.е. содержащие ) миноры порядка. Если среди них найдётся хоть один, отличный от нуля, то ищутся окаймляющие миноры следующего порядка. Процедура продолжается до тех пор, пока для какого-то, отличного от нуля минора -го порядка, все окаймляющие миноры ни окажутся равными нулю. Тогда ранг матрицы равен нулю. Примеры. 1. Найти ранг и указать какой-нибудь базисный минор матрицы
Решение. Используем свойства ранга матрицы. Для удобства преобразуем матрицу так, чтобы в первой строке самый крайний слева элемент был равен единице. Для этого вычтем первую стоку из второй и преобразованную вторую строку поменяем местами с первой. Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5: . Третья строка равна второй и её можно вычеркнуть согласно свойству 6. Таким образом, исходная матрица в результате эквивалентных преобразований переходит в следующую: . В этой матрице имеются миноры второго порядка, отличные от нуля, например, минор . Этот минор можно выбрать в качестве базисного. Следовательно, ранг исходной матрицы равен двум: . 2. Найти ранг матрицы: . Решение. => => =>
получаем из , вычитая из второй строки первую, а из третьей строки первую, умноженную на -2; из третьей строки вычитаем вторую – получаем ; подобным образом получаем нули и над главной диагональю. Ясно, что .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.) |