АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Методы вычисления определителей

Читайте также:
  1. II. Методы непрямого остеосинтеза.
  2. II. Рыночные методы.
  3. III. Параметрические методы.
  4. IV. Современные методы синтеза неорганических материалов с заданной структурой
  5. А. Механические методы
  6. Автоматизированные методы
  7. Автоматизированные методы анализа устной речи
  8. Адаптивные методы прогнозирования
  9. Адаптивные программы вычисления определенных интегралов
  10. Административно-правовые методы государственного управления
  11. Административно-правовые методы государственного управления
  12. АДМИНИСТРАТИВНО-ПРАВОВЫЕ МЕТОДЫ УПРАВЛЕНИЯ

1. Разложение по строке или столбцу.

2. Метод обращения в нуль всех (кроме одного) элементов строки или столбца. Метод состоит в том, что с учетом свойств определителя при помощи какого-либо столбца (строки) путём умножения его на соответствующие числа и вычитания из остальных столбцов (строк), зануляются все элементы выбранной строки (столбца) кроме одного, принадлежащего вычитаемому столбцу (строке).

3. Метод приведения к треугольному виду. Алгоритм, предложенный в предыдущем пункте, используется для последовательного зануления всех элементов первой строки (столбца) кроме одного, второй строки (столбца) – всех кроме двух и т.д. В итоге определитель преобразуется к треугольному виду. Величина такого определителя равна произведению элементов главной диагонали.

4. Вычисление с использованием теоремы Лапласа, согласно которой определитель - го порядка равен сумме произведений всех его миноров - го порядка, стоящих в выделенных строках (столбцах), на их алгебраические дополнения.

 

Примеры.

1. Вычислить данный определитель четвёртого порядка с помощью разложения по строке или столбцу:

Решение. Удобнее всего делать разложение по строке или столбцу, в которых встречается наибольшее число нулевых элементов. В данном случае – это четвёртый столбец. Итак, имеем

 
 

Полученные в итоге два определителя третьего порядка вычислим тем же методом. В определителе нулевых элементов нет, поэтому можно выбрать для разложения любой из столбцов, например, первый. В единственный нулевой элемент находится на пересечении первого столбца со второй строкой. Для разнообразия будем разлагать по второй строке:

Таким образом, окончательно получим .


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)