|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задания 13Даны точки А (1,0,1), В (-1,2,1), С (0,-1,-1). Найти: а) уравнение плоскости, проходящей через точки А,В,С; б) уравнение плоскости, проходящей через точку D (-1,0,-2) параллельно плоскости АВС; в) расстояние от точки D до плоскости АВС; г) уравнение прямой АD; д) угол между прямой АD и плоскостью АВС. Решение: а) Уравнение плоскости, проходящей через три данные точки, имеет вид: , или
- уравнение плоскости АВС, где = (А,В,С)= (1,1,-1). б) используем уравнение плоскости, проходящей через данную точку D: А (х - хD)+ В (у - уD)+ С (z - zD)=0. Так как искомая плоскость параллельна плоскости АВС, то нормальные векторы плоскостей должны быть коллинеарны, следовательно, поэтому в) приведем общее уравнение плоскости АВС к нормальному виду: тогда -нормальное уравнение плоскости АВС. Расстояние от точки D до плоскости АВС будет равно г) за направляющий вектор прямой АD возьмем вектор , поэтому прямая АВ имеет уравнение: д) 2 х - у +3=0 т.е. х = -23/10; у = -8/5. Точка М (-23/10;-8/5). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |