АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Шлеммов канал и коллекторные каналы

Читайте также:
  1. F.Канальный уровень
  2. Билет 17. Каналы распределения по сбыту.
  3. Блокаторы кальциевых каналов
  4. Блокаторы кальциевых каналов (БКК)
  5. Блокираторы кальциевых канальцев
  6. Взаимные помехи между каналами
  7. Виды представления информации в ТКС и возможные каналы ее утечки.
  8. Віртуальні канали і віртуальні шляхи
  9. Внутренняя канализация
  10. Время ожидания при прохождении проливов и каналов
  11. ВХОДНЫЕ КАНАЛЫ
  12. Выбор канала распределения. Факторы, влияющие на выбор канала распределения.. Пример выбора канала распределения.

Рис. 3.3.10. Сканограмма вскрытого венозного си­нуса склеры (шлеммов канал). Стрелками указаны трабекулы

Венозный синус склеры (шлеммов канал; sinus venosus sclerae Schlemm). Шлеммов ка­нал (Schlemm, 1830) представляет собой уз­кую трубку или систему трубок длиной 36 мм (рис. 3.3.7, 3.3.10, 3.3.11). Внутренняя ее стенка



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 


Рис. 3.3.11. Схематическое изображение венозного си­нуса склеры (шлеммового канала) и его отношение к артериальной и венозной системам (по Tripathi et ai, 1982):

1 — интрасклеральное венозное и глубокое склеральное сплете­ния; 2 — шлеммов канал; 3 — эписклеральное венозное спле­тение; 4 — водяные вены; 5 — артериальный круг

выстлана эндотелием. Шлеммов канал распола­гается в наружной части внутренней склераль­ной борозды. Его основной функцией является отведение камерной влаги из трабекулярной сети в эписклеральную венозную сеть посред­ством коллекторных каналов. Юкстаканалику-лярная соединительная ткань отделяет внут­ренние и внешние стенки шлеммова канала от трабекулярной сети и склеры.

Просвет шлеммова канала на поперечном разрезе овальной формы [81]. Он может быть разделен перегородками на отделы и состоять из многочисленных каналов.

Ширина шлеммова канала в поперечных плоскостях 120—400 мкм и 10—25 мкм [253, 1103]. Существуют довольно широкие колеба­ния размеров шлеммова канала в зависимости от возраста, наличия предшествоваших забо­леваний глаза, что необходимо учитывать при проведении антиглаукоматозных операций [161, 396, 775, 776, 902].

Эндотелиальная выстилка шлеммова кана­ла располагается на базальной мембране, кото­рая местами прерывается. Подобный характер базальной мембраны позволяет предположить, что мембрана не может обеспечить сущест­венного сопротивления потоку камерной влаги.

Главными компонентами базальной мембра­ны являются коллаген IV типа, ламинин, фиб-ронектин, гепаран сульфат протеогликан [387, 389, 697, 766, 1070].

В шлеммовом канале видны отростчатые расширения в виде дивертикулов, направлен-


ные в сторону юкстаканаликулярной ткани и трабекулярного аппарата (каналы Сондерман-на; [1022]).

Эндотелиальная выстилка. Стенка шлем­мова канала, обращенная в сторону глаза. На протяжении длительного времени продол­жались споры относительного того, существует или нет прямое сообщение между передней ка­мерой и шлеммовым каналам [645, 646, 980]. Теперь точно известно, что передача влаги осу­ществляется посредством переноса ее через цитоплазму эндотелиальных клеток. Морфоло­гическим проявлением этого процесса является присутствие в цитоплазме эндотелиоцитов ва­куолей [154, 1094].

Шлеммов канал выстлан одним слоем эндо­телиальных клеток. На внутренней поверхнос­ти канала они имеют длину 40—120 мкм, ши­рину 4—12 мкм, а толщину 0,2 мкм [1103]. Скреплены они между собой при помощи дес-мосом. Встречаются и редкие щелевые кон­такты, располагающиеся между эндотелиаль-ными клетками и клетками юкстаканаликуляр­ной ткани.

Межклеточные контакты занимают незначи­тельную площадь мембраны. Они не могут пре­дотвратить прохождение лейкоцитов или мак­рофагов. Плотность расположения межклеточ­ных контактов не изменяется при изменении внутриглазного давления [1207].

На апикальной поверхности эндотелиаль­ных клеток видны микроворсинки. В цитоплаз­ме эпителиоцитов содержатся многочисленные свободные рибосомы и микрофиламенты, а так­же множество пиноцитозных пузырьков.

Наиболее явной особенностью внутренней стенки шлеммова канала является наличие ги­гантских вакуолей. Ширина их от 4 до 6 мкм, а длина до 25 мкм. Возникают они в результате инвагинации базальной плазматической мемб­раны эндотелиальных клеток, обеспечивая, та­ким образом, возможность проникновения ка­мерной влаги в юкстаканаликулярную ткань [154, 368, 369, 566, 1024, 1093—1099, 1103, 1132, 1133].

Меньшая часть влаги может проникать че­рез поры, образованные в цитоплазме клеток («трансцеллюлярные каналы») [1103]. Поры могут быть до 2,5 мкм в диаметре, в то время как базальные инвагинации имеют ширину до 4 мкм. Плотность расположения пор в норме равняется 850 пор/мм2 (Johnson et al., 2002), причем их плотность уменьшается при разви­тии глаукомы.

Использование меченных изотопами ве­ществ и частиц различного диаметра позво­лило выяснить, что многие вещества могут проходить через «трансцеллюлярные каналы» из передней камеры в шлеммов канал (рис. 3.3.12). Эта возможность выявлена для торотраста, ферритина, золота и пероксидазы хрена. Через эти каналы могут проходить даже


Передняя камера и дренажная система



 


Рис. 3.3.12. Схематическое изображение концепции Tripathi et al. (1977) относительно механизма форми­рования трансцеллюлярных каналов в эндотелиальных клетках шлеммова канала при выведении камерной влаги (цикл образования вакуолей в эндотелиальных клетках):

] — влага в просвете канала; \-гЩ — влага в межтрабекуляр-ном пространстве

такие клетки, как эритроциты [173, 312, 380, 405—409, 653].

Выявлена закономерность, которая сводится к тому, что формирование вакуолей в эндотели­альных клетках зависит от уровня внутриглаз­ного давления. Причем при нарастании давле­ния число вакуолей увеличивается [405—409, 546, 566, 995, 1095].

Tripathi [1098, 1099] считает, что при увели­чении внутриглазного давления в эндотелиаль­ных клетках внутренней стенки шлеммова кана­ла появляется способность «циклически» про­пускать камерную влагу, образуя внутрицито-плазматические вакуоли и «трансцеллюлярные каналы» [115, 1098]. До сих пор непонятно, является ли этот процесс активным, исполь­зующим энергию, или протекает пассивно. Тем не менее важно знать, что камерная влага по­ступает в шлеммов канал только через эндо-телиальные клетки и только 1% общего объема влаги проникает между эндотелиальными клет­ками [407, 408, 877]. При этом вся эндотелиаль-ная выстилка шлеммова канала обеспечивает только 5—10% сопротивления оттоку камер­ной влаги [115, 295, 406].

Эндотелиальные клетки наружной стенки шлеммова канала более длинные и более плос­кие. Апикальная их поверхность гладкая. Они прочно соединены между собой при помощи зон замыкания. В цитоплазме клеток редко выявляются гигантские вакуоли. Лежат эндо-


телиоциты на толстой базальной мембране. В соответствии с особенностями строения на­ружной стенки можно предположить, что ее пропускная способность низкая. Тем не менее использование изотопных меток выявило высо­кую пропускную способность [1103].

Коллекторные каналы. Коллекторные ка­налы в количестве 25—35 начинаются у внеш­ней стенки шлеммова канала (рис. 3.3.11). По­средством этих каналов влага оттекает в три венозных сплетения: глубокое, среднее скле­ральное и эписклеральное. До 8 каналов отво­дят влагу непосредственно в эписклеральное венозное сплетение. Известны эти каналы как «водяные вены». Они были обнаружены Аше-ром (Ascher) в 1942 году, а их связь со шлем-мовым каналом выявлена Эштоном [80].

При помощи щелевой лампы «водяные ве­ны» видны в виде прозрачных сосудов, содержа­щих как камерную влагу, так и кровь [384]. Наиболее часто их можно обнаружить субконъ-юнктивально на расстоянии 2 мм от лимба кни­зу и назально. Перед впадением в эписклераль-ные вены они распространяются на протяжении 1,0—10,0 мм. Коллекторные каналы выстланы эндотелием. Клапаны в них отсутствуют.

Глубоко расположенное склеральное веноз­ное сплетение представлено ветвями передних ресничных вен, которые соединяются со сред­ним склеральным сплетением. При этом в лим-бальной области образуется интрасклеральная венозная сеть. Эта система получает кровь так­же и от ресничного венозного сплетения.

Из интрасклерального сплетения влага от­текает в эписклеральное сплетение и далее к передним ресничным венам. Эписклеральное ве­нозное сплетение, кроме того, получает кровь от вен конъюнктивы, дренирующих перилим-бальную область.

Кровоснабжение дренажной системы. Кро-воснабжается шлеммов канал сосудами малого круга кровообращения радужки, получающего, в свою очередь, ветви из поверхностных и глу­боких ответвлений передних ресничных арте­рий [344]. Иногда артериолы проходят вблизи шлеммова канала, отделенные от него только адвентицией [85].

Иннервация дренажной системы. Иннерва­ция дренажной системы осуществляется волок­нами надресничного и ресничного сплетений, расположенных в области склеральной шпоры.

В трабекулярной сети обнаруживаются как миелинизированные, так и немиелинизирован-ные нервные волокна. Миелинизированные во­локна образуют дугу, прилегающую к задней поверхности трабекулярного аппарата. Нерв­ные окончания обильны, как в юкстаканали-кулярной ткани, так и в трабекулярной сети (рис. 3.3.13) [154, 190, 496, 619, 793, 934, 947, 994, 1122, 1137, 1140].

Ruskell [946] нашел немиелинизированные волокна на всем протяжении трабекулярной



Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА


 



 

Рис. 3.3.13. Распределение нервных окончаний (тре­угольники) в области трабекулярной сети и веноз­ного склерального синуса (по Tripathi et al., 1982)

сети и шлеммова канала. Наиболее часто они встречались в юкстаканаликулярной ткани, а также вблизи эндотелиальной выстилки шлем­мова канала.

В настоящее время не совсем ясно, к како­му типу относятся обнаруживаемые в этой об­ласти нервные волокна. Это во многом связа­но с тем, что нейротрансмиттерами являются многочисленные вещества. Нервные волокна могут быть аминэргическими, нитрэргическими и пептидэргическими [994]. Nomura, Smelser [793], Ruskell [946] считают, что симпатические волокна составляют 30%. Располагаются они в трабекулярной сети и передней части продоль­ной ресничной мышцы и относятся к адренэрги-ческим. Количество подобных волокон умень­шается с возрастом, а также при хронической простой глаукоме [281, 619, 1184]. Некоторые симпатические нервы иммунореактивны к ней-ропептиду Y [139, 1041, 1042].

Парасимпатическая иннервация угла пере­дней камеры посредством волокон ресничного ганглия выявлена Holland, von Salirnan, Collins [498]. Ruskell [946, 935] установил, что у обезь­ян парасимпатические волокна поступают с ли­цевым нервом, образующих синапсы в крыло-небном ганглии. В глазницу они поступают по­средством rami orbitales [1040].

Имеются данные, свидетельствующие о том, что нервы, исходящие из крылонебного ганг­лия, иммуноактивны в отношении вазоинтер-стициального полипептида (VIP). Эти волокна также иннервируют заднюю часть увеального тракта глаза человека [1040].

Чувствительные волокна тройничного нерва, содержащие Р вещество, выявлены в струк­турах угла глаза обезьян и человека, а так­же в увеальных и корнеосклеральных частях трабекулярной сети, юкстаканаликулярной тка­ни и шлеммовом канале [1040]. Иннервиру-


ются пептид-, нитр- и аминэргическими волок­нами и миоэпителиальные клетки [1062—1064, 1066].

Отдельно необходимо остановиться на меха-норецепторах, обнаруживаемых в дренажной системе. Формируются они следующим обра­зом. Внутренние слои глаза млекопитающих иннервируются сенсорными нервами, исходя­щими из тройничного нерва. Большинство воло­кон относится к волокнам типа С [101, 498], а некоторые из них специфически окрашиваются на субстанцию Р [538].

Многочисленные ветви тройничного нерва проникают в склеру. При этом часть миели-низированных волокон образуют склеральное сплетение. Именно от этого сплетения отходят ветви к трабекулярной сети, теряя при этом миелиновую оболочку. Заканчиваются эти во­локна нервными окончаниями типа механоре-цепторов [1062]. Рядом исследователей пока­зано, что по строению механорецепторы тра­бекулярной сети наиболее близки к бароре-цепторам [182, 618, 994]. Эти рецепторы спе­цифически окрашиваются на наличие белков нейрофиламентов и синаптофизин, т. е. мар­кер синаптических пузырьков [244]. Рецепто­ры трабекулярной сети подобны висцеральным механорецепторам других частей тела — каро-тидного синуса, дуги аорты, эндокарда, сис­темы органов дыхания, пищевода, кожи, сухо­жилий [74, 433, 434, 582, 583, 610, 777, 883, 1086].

Количество и плотность расположения меха-норецепторов трабекулярной сети увеличива­ются с возрастом [1062, 1123, 1138], а также при хронической простой глаукоме.

Существует три гипотезы, объясняющие роль механорецепторов, расположенных в об­ласти дренажной системы [1062]. Они могут выполнять функцию проприоцепции сухожилий ресничной мышцы, влиять на сокращение мио-фибробластоподобных клеток склеральной шпо­ры [1066, 1068]. Кроме того, они могут функ­ционировать как барорецепторы при изменении внутриглазного давления.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)