|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Сетчатка. сопровождающихся гибелью нейронов сетчатой оболочки
Нередким структурным включением цитоплазмы клетки пигментного эпителия сетчатки является липофусцин. Липофусцин содержится во многих тканях организма и его количество нарастает с возрастом. Именно по этой причине этот пигмент был назван «пигментом старения». Возникает он в результате накопления в лизосомах стареющих клеток нелизирующихся агрегатов белка и липидов [1021]. Этот пигмент отличается характерными физико-химическими свойствами, включая естественную желтовато-зеленую флюоресценцию. Накопление липофусцина происходит не только в процессе старения, но и при ряде метаболических заболеваний [1148, 1217]. Причины и механизмы возникновения ли-пофусциноза оставались загадкой более 100 лет. В настоящее время известно, что липофусцин возникает в результате перекисного окисления клеточных компонентов, особенно липидов [1210]. В глазном яблоке, как было указано выше, липофусцин обнаруживается в пигментном эпителии сетчатки [134, 258, 291, 306, 557, 562, 1159, 1176]. Максимальное его накопление происходит в клетках, расположенных в заднем полюсе. К 80 годам липофусциновые гранулы занимают до 19% объема эпителиоцитов [134, 309, 949]. В отличие от других клеток организма, в которых возникает липофусцин в результате аутофагоцитоза внутриклеточных органелл [1021], липофусцин в клетках пигментного эпителия сетчатки возникает в результате фагоцитоза наружных сегментов фоторецепторов [135, 307, 559] с последующим перекисным окислением липидной фракции этих фрагментов. В этом процессе участвует коротковолновой спектр световой энергии [440, 563]. В последнее время указывается на большую роль в формировании липофусцина в эпителиальных клетках сетчатки витамина А и его производных. Об этом свидетельствуют многочисленные экспериментальные биохимические, фи- зикохимические исследования [291, 292, 558, 559, 561, 1148]. Зерна липофусцина необходимо морфологически отличать от меланосом. Это имеет практическое значение при диагностике пигментных новообразований. Меланиновые гранулы эпителиоцитов имеют круглую или овальную форму. При этом круглые гранулы располагаются в апикальной части клетки, а овальные — в микроворсинках. Липофусциновые гранулы круглые, но менее электронноплотные. Окрашиваются они судановыми красителями и флюоресцируют. Число зерен липофусцина прогрессивно увеличивается с возрастом. Наоборот, количество меланосом с возрастом уменьшается [309, 974, 1159, 1176]. Полагают, что уменьшение количества меланосом связано с деятельностью лизосомного аппарата клеток и возрастным измнением меланина. Меланин клеток пигментного эпителия поглощает световую энергию достаточно широкого спектра, защищая фоторецепторы и цитоплазму пигментных эпителиоцитов от повреждающего действия света [436]. Меланин обладает свойством свободного радикала и функционирует так же, как полимер, участвующий в обмене электронов. Меланин связывает ряд металлов и лекарственных веществ. Важно также помнить, что меланиновые гранулы пигментного эпителия сетчатки отличаются от меланосом стромальных меланоцитов уве-ального тракта. Гранулы увеального меланина значительно меньшего размера и имеют овальную форму. Это важно знать патоморфологам, особенно при дифференциальной диагностике внутриглазных пигментных новообразований. В апикальной части, а также вблизи комплекса Гольджи клеток пигментного эпителия выявляется большое количество пиносом [812]. Размер их меньше (53 нм), чем в эндотели-альных и других клетках (более 100 нм). Эти структуры указывают на наличие интесивных процессов эндоцитоза, характерного для клеток пигментного эпителия. В цитоплазме эпителиальных клеток можно также обнаружить дискретные темные частицы и пластинчатые тельца. Последние представляют собой фрагменты поглощенных наружных сегментов фоторецепторов [1028, 1219]. 3.6.2. Сенсорная часть сетчатки Сенсорная часть сетчатки представляет собой тонкую прозрачную оболочку, содержащую чувствительные к свету клетки, которые и превращают световую энергию в нервные импульсы. При диафаноскопии глазного яблока сетчатка выглядит пурпурно-красной из-за наличия в фоторецепторах зрительного пигмента (родопсин). Однако этот цвет быстро исчезает при освещении энуклеированного глаза на про- Глава 3. СТРОЕНИЕ ГЛАЗНОГО ЯБЛОКА
Толщина сетчатки в области зрительного нерва равняется 0,4 мм. Она истончается в области зубчатой линии с назальной стороны до 0,15 мм. Темпорально ее толщина 0,4 мм. В области центральной ямки (0,2 мм) [959]. Основу сенсорной части сетчатки составляют нервные клетки — фоторецептор, биполярная и ганглиозная клетки, ассоциативные горизонтальные нейроны, амакриновые клетки, а также глиальные элементы — клетка Мюллера, фиброзные и протоплазматические астроциты, микроглия и олигодендроциты. Фоторецепторы (палочки и колбочки). Слой палочек и колбочек является самым наружным слоем сенсорной сетчатки. Складывается он из цитоплазматических выростов палочек и колбочек фоторецепторных клеток. Фоторецепторы являются не чем иным, как высокоспециализированными нейроэпителиаль-ными клетками. По структуре и направленности выполняемой функции они близки к ре-цепторным клеткам других тканей и органов (тельца Пачини, Краузе, Мейснера). Тела фоторецепторных клеток располагаются в плоскости наружной пограничной мембраны, а их апикальные отростки (внутренние сегменты) лежат только снаружи этой мембраны. Большое значение имеет знание распределения и пространственной ориентации фоторецепторных клеток, что в значительной мере способствует пониманию зрительных связей в сетчатке. Плотное расположение фоторецепторов и их точная ориентация вдоль зрительной оси обеспечивают детальный анализ поля зрения. Любое изменение расположения фоторецепторов приводит к нарушению зрения. Если между фоторецепторами появляются пространства (при центральной серозной ретинопатии) и они неравномерно распределены, развивается мик-ропсия. Нарушение ориентации фоторецепторов вдоль зрительной оси приводит к метамор-фопсии. Фоторецепторы распределяются закономерным образом, в виде мозаики (рис. 3.6.13). В области желтого пятна лежат только колбочки. Вне желтого пятна колбочки кольцевидно окружены палочками. В сетчатой оболочке обнаруживается от 77,9 до 107,3 млн (в среднем 92 млн) палочек и 4,08—5,29 млн (в среднем 4,6 млн) колбочек. Существуют индивидуальные отличия плотности палочек и колбочек в зависимости от топографического отдела сетчатки [223]. Наибольшее разнообразие плотности выявляется вблизи центральной ямки и у зубчатой линии, а наименьшее — в средней части сетчатки и по периферии. Плотность колбочек максимальна в области центральной ямки (199 000 колбочек в мм2). При этом их число колеблется в широких пре- Рис. 3.6.13. Особенности «мозаичного» строения периферии сетчатки (а) и области центральной ямки (б): / — палочки; 2 — колбочки. Слева иллюстрируется срез сетчатки, а справа — плоскостной препарат (по Curcio et al., 1990) делах (от 100 000 до 324 000 колбочек в мм2) [223]. По мере удаления от центральной ямки плотность колбочек существенно уменьшается. Так, плотность колбочек уменьшается до 75 000 мм2 в 130 мкм от центра центральной ямки. Примерно в трех миллиметрах от центра центральной ямки отмечается наибольшая плотность палочек, а плотность колбочек уменьшается. Степень этого уменьшения различна в зависимости от направления. Так, плотность колбочек с назальной стороны на 40— 45% выше, чем с темпоральной. В периферических отделах сетчатки плотность колбочек опять возрастает (рис. 3.6.13—3.6.15). Считают, что пространственное расположение колбочек в области желтого пятна является фактором, определяющим разрешающую способность глаза. Так, среднее расстояние между центрами колбочек колеблется от 2,53 ±0,29 мкм до 6,16 ±1,04 мкм. Наименьшее расстояние между клетками обнаружено в области центральной ямки. Это свидетельствует о наибольшей разрешающей способности сетчатки именно в этой области [223]. Необходимо отметить, что данные психофизиологических исследований относительно остроты зрения не полностью совпадают с приведенными выше анатомическими данными. По всей видимости, большое значение имеют другие факторы [1171]. Единственная область в сетчатке, где функциональная острота зрения совпадает с анатомической разрешающей способностью, располагается между 0,2 и 2,0°. Интересно, что острота зрения у новорожденных на два порядка ниже, чем у взрослых [131]. В ближайшее время после рождения колбочки, Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |