|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Особенности решения алгебраических нелинейных уравненийВспомним предварительно известные из курса алгебры некоторые свойства алгебраических уравнений с действительными коэффициентами в виде 1. Уравнения степени n имеет n корней, среди которых могут быть как действительные, так и комплексные. 2. Число положительных действительных корней меньше или равно числу перемен знаков в последовательности коэффициентов a0, a1,…, an. Заменяя х на (-х) в уравнении таким же способом можно оценить число отрицательных действительных корней. 3. Комплексные корни образуют комплексно-сопряженные пары, то есть каждому корню x=c+id соответствует x=c-id Одним из способов решения алгебраического уравнения является метод понижения порядка. Он состоит в том, что после нахождения какого-либо корня x=c данное уравнение можно разделить на x-c, понизив тем самым его порядок на 1 до n-1 степени. Для уменьшения погрешностей лучше сначала находить меньшие по модулю корни многочлена и сразу удалять их из уравнения. Поэтому, если отсутствует информация о величинах корней, в качестве начальных приближений принимают числа 0, ±1 и так далее. Изложенные методы решения нелинейных уравнений могут быть использованы и для нахождения комплексных корней многочлена. Если в качестве начального приближения корня взять комплексное число, то последующие приближения и окончательное значение корня могут быть комплексными. Комплексные корни попарно сопряженные и при их исключении порядок уравнения уменьшается на два, поскольку оно делится сразу на квадратный трехчлен.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |