|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
MatLab: решение дифференциальных уравненийДифференциа́льное уравне́ние — уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, ее производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Порядок, или степень дифференциального уравнения — наибольший порядок производных, входящих в него. Решением (интегралом) дифференциального уравнения порядка n называется функция y(x), имеющая на некотором интервале (a, b) производные y '(x), y ''(x),..., y (n)(x) до порядка n включительно и удовлетворяющая этому уравнению. Все дифференциальные уравнения можно разделить на обыкновенные (ОДУ), в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными (УРЧП), в которых входящие функции зависят от многих переменных. Обыкновенные дифференциальные уравнения (ОДУ) — это уравнения вида или , где — неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от переменной времени , штрих означает дифференцирование по . Число называется порядком дифференциального уравнения. Дифференциальные уравнения в частных производных (УРЧП) — это уравнения, содержащие неизвестные функции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде: , где — независимые переменные, а — функция этих переменных. Простой пример решения ДУ в MatLab: В качестве самого простого примера приведем решение следующего уравнения с начальным условием и аналитическим решением . Возможный формат вызова процедуры решателя в MatLab: Снимок экрана, который соответствует численному решению этой задачи в системе MatLab.
Файл-функция, описывающая правую часть уравнения, – текстовый файл с расширением func1.m – содержит всего две строки Знаком % начинаются комментарии. Вызываться такая функция может из другойпрограммы, функции, или, как в этом случае, из командного окна Здесь задан временной интервал от Tstart=0 до Tfinal=2 и начальное значение функции StartVector=1. График полученной таким образом функции Y(T) воспроизводится вызовом встроенной функции plot Следующей строкой мы кружочками нарисовали на том же графике точное решение в точках полученного вектора-столбца T: В общем случае, процедура ode45 может решать систему уравнений следующего вида:
функция-столбец, зависящая отвремени и компонент вектора x. Заметим, что уравнение (1) можно решить в MatLab и символьно. Приведем часть командного окна, где была вызвана стандартная процедура dsolve Здесь также использовано начальное условие.
Видим, что с точностью до переобозначения x → t результат совпадает с приведенным выше.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |