АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ЭНЕРГЕТИЧЕСКИЙ БАЛАНС

Читайте также:
  1. Агрегированный аналитический баланс
  2. Актив баланса
  3. Актив баланса
  4. Активные воздействия на гидросферу и водный баланс
  5. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЕ ТЕПЛОВОГО БАЛАНСА
  6. Анализ баланса
  7. АНАЛИЗ БУХГАЛТЕРСКОГО БАЛАНСА.
  8. Анализ взаимосвязи актива и пассива баланса
  9. Анализ дебиторской и кредиторской задолженности на основании данных приложения к бухгалтерскому балансу и отчету о прибылях и убытках
  10. Анализ деловой активности (на основе данных бухгалтерского баланса и отчета о прибылях и убытках)
  11. Анализ динамики состава и структуры активов баланса.
  12. Анализ изменений в составе и структуре активов баланса

 

Энергетический баланс определяется полученной и затраченной энергией. Если полученная пациентом энергия равна затраченной, говорят о нуле­вом балансе. Отрицательный баланс возникает в том случае, если затраченная энергия больше полученной. Положительный энергетический ба­ланс достигается, если полученная энергия больше затраченной. В этом случае избыточная энергия депонируется в виде жира и расходуется при усилении энергетических процессов. Уровень получаемой энергии складывается из суммы энергетической ценности жиров, углеводов и белков, од­нако в условиях ПП калораж от вводимых белков учитываться не должен, так как вводимый азот при достаточном калораже включается в синтез белка.

Потребность в энергии может быть установлена с помощью различных методов. Ниже приводятся наиболее распространенные из них, которые позволяют определить потребность организма человека в небелковых ка­лориях.

1. Расчет потребности в энергии по уравнению Харриса — Бенедикта. Уравнение Харриса — Бенедикта позволяет быстро определить энергозатрату покоя (ЭЗП, ккал/сут).

Для мужчин: ЭЗП = 66,5 + [13,75 х масса тела (кг)] + [5,0 х рост (см)] — [6,8 х возраст (годы)];

Для женщин: ЭЗП = 65,5 + [9,6 х масса тела (кг)] + [1,8 х рост (см)] — [4,7 х возраст (годы)].

После проведенного по формуле расчета выбирают фактор метаболической активности, основанный на клиническом статусе пациента (Элвин и др.):

• избирательная хирургия 1—1,1;

• множественные переломы 1,1—1,3;

• тяжелая инфекция 1,2—1,6;

• ожоговая травма 1,5—2,1.

Для того чтобы определить суточную потребность в энергии, следует умножить величину ЭЗП на фактор метаболической активности. Величина ЭЗП, определенная по формуле Харриса — Бенедикта, составляет в сред­нем 25 ккал/кг/сут. Этот показатель умножается на средний показатель фактора метаболической активности (1,2—1,7), что дает диапазон потреб­ности в калориях — от 25 до 40 ккал/кг/сут [McClave S.A. et al., 1990].

2. Метод непрямой калориметрии. Посредством этого метода можно у тяжелобольных непосредственно измерить расход энергии и произвести коррекцию энергетических затрат. Этот метод основан на прямом измере­нии потребления кислорода. При окислении 1 г питательного вещества освобождается определенное количество энергии: 1 г углеводов — 4,1 ккал, 1 г жиров — 9,3 ккал, 1 г этанола — 7,1 ккал, 1 г белка — 4,1 ккал.



3. Мониторирование показателей потребления кислорода и выделения уг­лекислоты. С помощью мониторирования показателей потребления кислорода и выделения углекислоты в течение 15—20 мин может быть выполне­на оценка суточного расхода энергии с погрешностью не более 10 %. Каж­дому питательному веществу свойственна определенная величина дыхательного коэффициента (ДК) — отношения выделенной углекислоты к по­требленному кислороду. Для жиров величина ДК составляет 0.7; для белков — около 0,8; для углеводов — 1,0. Определив количество выделенной углекислоты и количество потребленного кислорода методом газоанализа, рассчитывают ДК и определяют количество израсходованных калорий.

У тяжелобольных суточная потребность в энергии составляет в среднем 3000—3500 ккал. Повышение температуры тела на 1 °С увеличивает потребность в энергии на 10—13 % [Вретлинд А., Суджян А., 1990].


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)