АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Нелинейные уравнения и метод половинного деления

Читайте также:
  1. F. Метод, основанный на использовании свойства монотонности показательной функции .
  2. FAST (Методика быстрого анализа решения)
  3. FSBFRUL (Ф. Правило распределения ассигнований по КЭКР.Заголовки)
  4. I I. Тригонометрические уравнения.
  5. I Определения
  6. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  7. I. 2.1. Графический метод решения задачи ЛП
  8. I. 3.2. Двойственный симплекс-метод.
  9. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  10. I. Дайте определения следующих правовых категорий.
  11. I. Метод рассмотрения остатков от деления.
  12. I. Методические основы

Выполнил

студент 1 курса группы 13-ТТП

Летов Петр

Проверила

Шувалова Татьяна Евгеньевна

 

Нижний Новгород

2014 год.

Содержание

1. Введение……………………………………………………….3

2. Цель и задачи………………………………………………….4

3. Теория нелинейных уравнений

и метод половинного деления………………………5

4. Нахождения корней нелинейного уравнения с заданной точностью:

4.1. MathCAD………………………………………………...9

4.2. Microsoft Excel………………………………………….12

4.3. Pascal…………………………………………………….15

5. Выводы…………………………………………………………

6. Список литературы……………………………………………

 

Введение

Наука не стоит на месте и все время развивается. Нередко приходится встречаться с математическими задачами, для решения которых нужно пользоваться громоздкими формулами. Это неудобно. Возникла необходимость в развитии численных методов математического анализа, которые в сегодняшнем дне имеют важнейшее значение. В большинстве случаев численные методы являются приближенными. В ряде случаев численный метод строится на базе бесконечного процесса, который в пределе сводится к искомому решению. Однако реально предельный переход не удается осуществить, и процесс, прерванный на некотором шаге, дает приближенное решение. Одним из таких методов является метод бисекции или метод деления отрезка пополам (Метод половинного деления).

 

 

Цель и задачи

Цель – раскрыть содержание темы «Метод половинного деления». Закрепить ее путем выполнения курсовой работы. Создать программный продукт, который находит отрезок и искомый корень уравнения в этом отрезке при помощи шагового метода. Уточнить корень методом половинного деления.

 

Задачи:

1. Изучить метод половинного деления и шаговый метод для решения нелинейных уравнений.

2. Научиться решать нелинейные уравнения в Pascal, Microsoft Excel, MathCAD.

3. Решить данное уравнение и найти корни и построить графики.

4. Проанализировать результаты.

5. Сделать выводы.

 

 

Нелинейные уравнения и метод половинного деления

f(x) = 0, (1) где функция f(x) определена и непрерывна на некотором конечном или бесконечном интервале a< x <b. В частности, в форме нелинейных уравнений представляются математические модели анализа статических свойств объектов проектирования или их элементов. Если функция f(x) представляет собой многочлен n-й степени видаa0 + a1 x + a2 x2 +... + anxn, то уравнение (1) называется алгебраическим. Когда x находится под знаком трансцендентной функции (показательной, логарифмической, тригонометрической и т.п.), уравнение называется трансцендентным. Значение аргумента x*, при котором функция f(x) обращается в нуль, т.е. f(x*) = 0, называется корнем уравнения.

В общем случае для функции f(x) не существует аналитических формул для нахождения корней. Более того, их точное вычисление не всегда является необходимым. Это объясняется тем, что встречающиеся в инженерной практике уравнения часто содержат коэффициенты, величины которых имеют приближенные значения. В таких случаях решается задача определения корней с некоторой заранее заданной степенью точности.

В дальнейшем предполагаем, что уравнение (1) имеет только изолированные корни, т.е. для каждого из них существует некоторая окрестность, не содержащая других корней этого уравнения. Процесс нахождения изолированных действительных корней нелинейного уравнения включает два этапа:

1) отделение корней, т.е. нахождение интервалов [a, b], внутри которых содержится один и только один корень уравнения;

2) уточнение приближенных значений отдельных корней до заданной степени точности.

Этап отделения корней может быть выполнен различными способами. Во-первых, приближенное значение корня иногда бывает известно из физического смысла задачи. Во-вторых, для отделения корней может использоваться графический способ, основанный на построении графика функции y = f(x), где приближенные значения действительных корней уравнения f(x) = 0 соответствуют абсциссам точек пересечения или касания графика с осью 0x (y = 0). Наиболее часто применяется метод отделения корней, основанный на следующем положении: если на концах некоторого интервала [a, b] значения непрерывной функции f(x) имеют разные знаки, т.е. f(a)f(b) <0, то на этом интервале уравнение (1) имеет хотя бы один корень. При этом корень является единственным, если производная функции f'(x) существует и сохраняет постоянный знак внутри интервала [a, b].Рассмотрим простейший алгоритм отделения корней нелинейных уравнений, ориентированный на использование ЭВМ. Исходный интервал [a, b], на котором определена и непрерывна функция f(x), разбивается на n отрезков равной длины

(x0, x1), (x1, x2),..., (xn -1, xn),где x0 < x1<...<xn и x0 = a, xn = b. Затем вычисляются значения функции f(xj) в точках xj (j = ) и выбирается отрезок (xi, xi+1), на концах которого функция имеет разные знаки, т.е. f(xi)f(xi+1) < 0. Если длина этого отрезка достаточно мала (можно предположить единственность корня), то считается, что корень отделен на интервале [a, b], где a = xi, b = xi+1. В противном случае границы исходного интервала сдвигаются, т.е. a = xi, b = xi + 1, и процедура повторяется.

Необходимо отметить, что длина исходного интервала [a,b], на котором определена функция f(x), может изменяться в широких пределах. Поэтому число отрезков n, а также длина искомого

интервала [a, b] являются переменными величинами, которые должны задаваться в каждом конкретном случае с учетом физического смысла решаемой задачи.

На втором этапе решения нелинейных уравнений полученные приближенные значения корней уточняются различными итерационными методами до некоторой заданной погрешности.

Метод половинного деления.

Для этого метода существенно, чтобы функция f(x) была непрерывна и ограничена в заданном интервале [a, b], внутри которого находится корень. Предполагается также, что значения функции на концах интервала f(a) и f(b) имеют разные знаки, т.е. выполняется условие f(a)f(b) <0.

Обозначим исходный интервал [a, b] как [a0, b0]. Для нахождения корня уравнения f(x) = 0 отрезок [a0, b0] делится пополам, т.е. вычисляется начальное приближение x0 = (a0 + b0)/2. Если f(x0) = 0, то значение x0 = x* является корнем уравнения. В противном случае выбирается один из отрезков [a0, x0] или [x0, b0], на концах которого функция f(x) имеет разные знаки, так как корень лежит в этой половине. Далее выбранный отрезок обозначается как [a1, b1], вновь делится пополам точкой x1 = (a1 + b1)/2 и т.д. В результате на некоторой итерации получается точный корень x* уравнения f(x) = 0, либо бесконечная последовательность вложенных отрезков [a0, b0], [a1, b1],..., [ai, bi],..., таких, что f(ai)f(bi) <0 (i =1, 2,...), сходящихся к корню x*.

Если требуется определить корень x* с погрешностью e, то деление исходного интервала [a, b] продолжают до тех пор, пока длина отрезка [ai, bi] не станет меньше 2e, что записывается в форме условия çbi - aiç< 2e.

В этом случае середина последнего интервала [ai, bi] с требуемой степенью точности дает приближенное значение корня

x*» (ai + bi) / 2.

Метод половинного деления легко реализуется на ЭВМ и является наиболее универсальным среди итерационных методов уточнения корней. Его применение гарантирует получение решения для любой непрерывной функции f(x), если найден интервал, на котором она изменяет знак. В том случае, когда корни не отделены, будет найден один из корней уравнения. Метод всегда сходится, но скорость сходимости является небольшой, так как за одну итерацию точность увеличивается примерно в два раза. Поэтому на практике метод половинного деления обычно применяется для грубого нахождения корней уравнения, поскольку при повышении требуемой точности значительно возрастает объем вычислений.

 

 


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)