АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кислотно-основные свойства

Читайте также:
  1. Бюджетная линия потребителя и ее свойства. Наклон бюджетной линии.
  2. Бюджетные ограничения. Бюджетная линия потребителя, её свойства. Наклон бюджетной линии
  3. Виды денег и их свойства.
  4. Витамины: классификация, строение, физико-химические свойства. Роль витаминов в организме. Фармакопейный метод определения содержания аскорбиновой кислоты в плодах шиповника.
  5. Вопрос: Бесконечно малые функции и их свойства. Эквивалентные бесконечно малые. Бесконечно большие функции. Вертикальные асимптоты графика функции.
  6. Генетический код и его свойства. Строение и роль хромосом. Понятие гена и гистона.
  7. ГИДРОХИНОН. СВОЙСТВА.СТРОЕНИЕ
  8. Гипербола. Каноническое уравнение гиперболы и его свойства.
  9. Гипербола. Определение. Каноническое уравнение. Свойства.
  10. Горечи: строение, классификация, физико-химические свойства.
  11. Задача колебаний круглой мембраны. Диференциальные уравнения Бесселя. Функции Бесселя и их свойства.
  12. Знак и его свойства. Собственно семиотические и квазисемиотические явления.

По кислотно-основным свойствам аминокислоты разделяют на три группы.

Нейтральные аминокислоты не содержат в радикале R дополнительных кислотных или основных центров, способных к ионизации в водной среде. В кислой среде они существуют в виде однозарядного катиона и являются двухосновными кислотами по Бренстеду. Как видно на примере аланина, изоэлектрическая точка у нейтральных аминокислот не равна 7, а лежит в интервале 5,5 – 6,3.

pI=1/2(2,34+9,69)=6,01

Основные аминокислоты содержат в радикале R дополнительный основный центр. К ним относятся лизин, гистидин и аргинин. В кислой среде они существуют в виде дикатиона и являются трехосновными кислотами. Изоэлектрическая точка основных аминокислот, как видно на примере лизина, лежит в области рН выше 7.

pI= 1/2(9,0+10,05)=9,74

Кислые аминокислоты содержат в радикале R дополнительный кислотный центр. К ним относятся аспаргиновая и глутаминовая кислоты. В кислой среде они существуют в виде катиона и являются трехосновными кислотами. Изоэлектрическая точка этих аминокислот лежит в области рН много ниже 7.

pI= 1/2(2,09+3,86)=2,77

Тирозин и цистеин содержат в боковых радикалах слабые кислотные центры, способные к ионизации при высоких значениях рН.

Важное значение имеет тот факт, что при физиологическом значении рН (~7) ни одна аминокислота не находится в изоэлектрической точке. В организме все аминокислоты ионизированы, что обеспечивает им хорошую растворимость в воде.

Различие в кислотно-основных свойствах используется для разделения аминокислот методом электрофореза и ионообменной хроматографии. При данном значении рН разные аминокислоты могут иметь разный по величине и знаку электрический заряд. Например, при рН6 лизин имеет заряд +1 и движется к катоду, аспаргиновая кислота имеет заряд –1 и перемещается к аноду, а аланин находится в изоэлектрической точке и не перемещается в электрическом поле. Таким образом при рН6 они могут быть разделены с помощью электрофореза.

Для разделения аминокислот методом ионообменной хроматографии используют катионообменные смолы (сульфированный полистирол). Процесс ведут в кислой среде, когда аминокислоты находятся катионной форме.

Скорость продвижения аминокислот по хроматографической колонке зависит от силы их электростатических и гидрофобных взаимодействий со смолой. Наиболее прочно связываются со смолой основные аминокислоты, имеющие наибольший положительный заряд, наименее прочно – кислые аминокислоты. Наибольшим гидрофобным связыванием со смолой обладают аминокислоты с неполярными боковыми радикалами, особенно ароматическими. Таким образом, порядок элюирования аминокислот следующий. Легче других элюируются кислые аминокислоты (Asp и Glu), следом за ними идут аминокислоты, содержащие полярные неионогенные группы (Ser, Thr, Asn, Gln), затем из колонки вымываются аминокислоты с неполярными боковыми радикалами (Phe, Trp, Ile и др.) и в последнюю очередь элюируются основные аминокислоты (His, Lys, Arg).

3.4. Реакции аминокислот in vivo

Восстановительное аминирование – метод синтеза a -аминокислот из a -оксокислот при участии кофермента НАД Н в качестве восстанавливающего реагента.

Трасаминирование – основной путь биосинтеза аминокислот. При трансаминировании происходит взаимообмен двух функциональных групп – аминной и карбонильной между аминокислотой и кетокилотой. При этом нужная для организма аминокислота 1 синтезируется из аминокислоты 2, имеющейся в клетках в избыточном коичестве. Реакция осуществляется при участии ферментов трансаминаз и кофермента пиридоксальфосфата.

Содержащий альдегидную группу пиридоксальфосфат служит переносчиком аминогруппы в виде основания Шиффа.

Декарбоксилирование

Аминокислоты декарбоксилируются под действием ферментов декарбоксилаз при участи кофермента пиридоксальфосфата. При этом образуются биогенные амины.

Биогенные амины обладают ярко выраженной биологической активностью. Важнейшими из них являются - коламин (предшественник в синтезе холина и нейромедиатора ацетилхолина), гистамин (обеспечивает аллергические реакции организма), g -аминомасляная кислота (нейромедиатор), адреналин (гормон надпочечников, нейромедиатор)

Дезаминирование

Неокислительное дезаминирование происходит путем отщепления аммиака под действием ферментов с образованием a,b -непредельных кислот.

Окислительное дезаминирование происходит при участии ферментов оксидаз и кофермента НАД+, который выступает в качестве окислителя. В результате выделяется аммиак и образуется соответствующая кетокислота.

С помощью реакций дезаминирования снижается избыток аминокислот в организме.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)