|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Формула простых процентовРассмотрим процесс наращения (accumulation), т.е. определения денежной суммы в будущем, исходя из заданной суммы сейчас. Экономический смысл операции наращения состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Здесь идет движение денежного потока от на-стоящего к будущему. Величина FV показывает будущую стоимость "сегодняшней" величины PV при заданном уровне интенсивности начисления процентов i.
При использовании простых ставок процентов проценты (процентные деньги) определяются исходя из первоначальной суммы долга. Схема простых процентов предполагает неизменность базы, с которой происходит начисление процентов. Из определения процентов не трудно заметить, что проценты (процентные деньги) представляют собой, по сути, абсолютные приросты:
I = FV - PV,
а поскольку база для их начисления является постоянной, то за ряд лет общий абсолютный прирост составит их сумму или произведение абсолютных приростов на количество лет ссуды: I = (FV - PV) n = [(FV - PV) / PV • PV ] n = i • PV • n,
где i = (FV - PV) / PV по определению процентной ставки. Таким образом, размер ожидаемого дохода зависит от трех факторов: от величины инвестированной суммы, от уровня процентной ставки и от срока финансовой операции. Тогда наращенную сумму по схеме простых процентов можно будет определять следующим образом:
FV = PV + I = PV + i • PV • n = PV (1 + i • n) = PV • kн,
где kн – коэффициент (множитель) наращения простых процентов. Данная формула называется "формулой простых процентов". Поскольку коэффициент наращения представляет собой значение функции от числа лет и уровня процентной ставки, то его значения легко табулируются. Таким образом, для облегчения финансовых расчетов можно использовать финансовые таблицы, содержащие коэффициенты наращения по простым процентам.
Пример 1. Сумма в размере 2'000 рублей дана в долг на 2 года по схеме простого процента под 10% годовых. Определить проценты и сумму, подлежащую возврату. Решение: Наращенная сумма: FV = PV (1 + n • i) = 2'000 (1 + 2 • 0'1) = 2'400 руб. или FV = PV • kн = 2'000 • 1,2 = 2'400 руб. Сумма начисленных процентов: I = PV • n • i = 2'000 • 2 • 0,1 = 400 руб. или I = FV - PV = 2'400 - 2'000 = 400 руб. Таким образом, через два года необходимо вернуть общую сумму в размере 2'400 рублей, из которой 2'000 рублей составляет долг, а 400 рублей – "цена долга".
Следует заметить, что подобные задачи на практике встречаются редко, поскольку к простым процентам прибегают в случаях:
В тех случаях, когда срок ссуды менее года, происходит модификация формулы: а) если срок ссуды выражен в месяцах (М), то величина n выражается в виде дроби:
n = М / 12,
тогда все формулы можно представить в виде:
FV = PV (1 + М / 12 • i);
I = PV • М / 12 • i;
kн = 1 + М / 12 • i.
Пример 2. Изменим условия предыдущего примера, снизив срок долга до 6 месяцев. Решение: Наращенная сумма: FV = PV (1 + М / 12 • i) = 2'000 (1 + 6/12 • 0'1) = 2'100 руб. или FV = PV • kн = 2'000 • 1,05 = 2'100 руб. Сумма начисленных процентов: I = PV • М / 12 • i = 2'000 • 6/12 • 0,1 = 100 руб. или I = FV - PV = 2'100 - 2'000 = 100 руб. Таким образом, через полгода необходимо вернуть общую сумму в размере 2'100 рублей, из которой 2'000 рублей составляет долг, а проценты – 100 рублей.
б) если время выражено в днях (t), то величина n выражается в виде следующей дроби:
n = t / T,
где t – число дней ссуды, т.е. продолжительность срока, на который выдана ссуда; T – расчетное число дней в году (временная база). Отсюда модифицированные формулы имеют следующий вид:
FV = PV (1 + t / T • i);
I = PV • t / T • i;
kн = 1 + t / T • i.
Здесь возможны следующие варианты расчета:
Таким образом, если время финансовой операции выражено в днях, то расчет простых процентов может быть произведен одним из трех возможных способов:
Чисто формально возможен и четвертый вариант: точные проценты с приближенным числом дней ссуды, – но он лишен экономического смысла. Вполне естественно, что в зависимости от использования конкретной практики начисления простых процентов их сумма будет различаться по абсолютной величине. Для упрощения процедуры расчета точного числа дней финансовой операции пользуются специальными таблицами порядковых номеров дней года (Приложение 1), в которых все дни в году последовательно пронумерованы. Точное количество дней получается путем вычитания номера первого дня финансовой операции из номера последнего дня финансовой операции.
Пример 3. Сумма 2 млн руб. положена в банк 18 февраля не високосного года и востребована 25 декабря того же года. Ставка банка составляет 35% годовых. Определить сумму начисленных процентов при различной практике их начисления. Решение:
Временная база принимается за 360 дней, T = 360. Количество дней ссуды: 3>>> t = 11 (февраль) + 30 (март) + 30 (апрель) + 30 (май) + 30 (июнь) + + 30 (июль) + 30 (август) + 30 (сентябрь) + 30 (октябрь) + + 30 (ноябрь) + 25 (декабрь) - 1 = 305 дней Сумма начисленных процентов: I = P • t / T • i = 2'000'000 • 305/360 • 0,35 = 593'055,55 руб.
Временная база принимается за 360 дней, T = 360. Количество дней ссуды: t = 11 (февраль) + 31 (март) + 30 (апрель) + 31 (май) + 30 (июнь) + + 31 (июль) + 31 (август) + 30 (сентябрь) + 31 (октябрь) + + 30 (ноябрь) + 25 (декабрь) - 1 = 310 дней По таблицам порядковых номеров дней в году (Приложение 1) можно определить точное число дней финансовой операции следующим образом: t = 359 - 49 = 310 дней. Сумма начисленных процентов: I = P • t / T • i = 2'000'000 • 310/360 • 0,35 = 602'777,78 руб.
Временная база принимается за 365 дней, T = 365. Количество дней ссуды берется точным, t = 310 дней. Сумма начисленных процентов: I = P • t / T • i = 2'000'000 • 310/365 • 0,35 = 594'520,55 руб. Как видно, результат финансовой операции во многом зависит от выбора способа начисления простых процентов. Поскольку точное число дней в большинстве случаев больше приближенного числа дней, то и проценты с точным числом дней ссуды обычно получаются выше процентов с приближенным числом дней ссуды. В практическом смысле эффект от выбора того или иного способа зависит от значительности сумм, фигурирующих в финансовой операции.
В банковской практике размещенный на длительное время капитал может в течение этого периода времени изменяться, т.е. увеличиваться или уменьшаться путем дополнительных взносов или отчислений. Таким образом, при обслуживании счетов банки сталкиваются с непрерывной сетью поступлений и расходованием средств и начислени-ем процентов на постоянно меняющуюся сумму. В этой ситуации в банковской практике используется правило: общая начисленная за весь срок сумма процентов равна сумме процентов, начисленных на каждую из постоянных на некотором отрезке времени сумм. Это касается и дебетовой, и кредитовой части счета. Разница лишь в том, что кредитовые проценты вычитаются. В таких случаях для расчета процентов используется методика расчета с вычислением процентных чисел: каждый раз, когда сумма на счете изменяется, производится расчет " процентного числа " за период, в течение которого сумма на счете была неизменной. Процентное число вычисляется по формуле:
Процентное число = = (Сумма на счете • Длительность периода в днях) / 100 = = ( PV • t ) / 100
Для определения суммы процентов за весь срок их начисления все "процентные числа" складываются, и их сумма делится на постоянный делитель, который носит название " процентный ключ " или дивизор, определяемый отношением количества дней в году к годовой процентной ставке:
I = ΣПроцентных чисел: Постоянный делитель,
где
Постоянный делитель = Продолжительность года в днях / Годовая ставка процентов = T / i 4>>>
Проценты, вычисляемые с использованием дивизора, рассчитанного исходя из 365 дней в году, будут меньше, чем проценты по дивизору, где количество дней в году принято за 360, поэтому при обслуживании конкретного клиента всегда используется один из дивизоров. Методика с использованием процентных чисел по своей сути является последовательным применением формулы простых процентов для каждого интервала постоянства суммы на счете:
I = I 1 + I 2 + I 3 = P 1 • t 1 / T • i + P 2 • t 2 / T • i + P 3 • t 3 / T • i
Пример 4. При открытии сберегательного счета по ставке 28% годовых, 20 мая 1999 года была положена сумма в размере 1'000 рублей, а 5 июля на счет добавлена сумма в 500 руб., 10 сентября снята со счета сумма в 750 руб., а 20 ноября счет был закрыт. Используя процентные числа определить сумму начисленных процентов при условии, что банк использует "германскую практику". Решение: Срок хранения суммы в 1'000 руб. составил 46 дней, тогда Процентное число 1 = (1'000 • 46) / 100 = 460; срок хранения суммы в размере 1'500 руб. составил 66 дней, откуда Процентное число 2 = (1'500 • 66) / 100 = 990; срок хранения уменьшенной до 750 руб. суммы составил 70 дней: Процентное число 3 = (750 • 70) / 100 = 525 Дивизор = 360 / 28 = 12,857 Следовательно, сумма начисленных процентов за период действия сберегательного счета составит: I = (460 + 990 + 525) / 12,857 = 153,61 руб. Можно проверить правильность произведенных нами расчетов, исходя из сути процентов: I = 1'000 • 46 / 360 • 0,28 + 1'500 • 66 / 360 • 0,28 + 750 • 70 / 360 • 0,28 = 153,61 руб. Как видим, результат вычислений тот же самый.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.) |