|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Движущие силы радиального транспорта ионов и загрузка ксилемыКонечный пункт радиальной симпластной транслокации — сосуды ксилемы, составляющие важную часть апопласта стели. В ксилему ионы поступают из клеток ксилемной паренхимы, и существует специальный термин — «загрузка ксилемы». Движущая сила транскорневого транспорта ионов — градиент их электрохимического потенциала (ДД) между границами симпласта: на входе в него (плазмалемма клеток ризодермы) и при выходе (плазмалемма клеток ксилемной паренхимы) (рис. 6.24). В соответствии с принципами термондинамики для активного передвижения ионов через корень в ксилему достаточно, чтобы активный мембранный транспорт имел место только в одном из пунктов — либо на входе, либо на выходе из симпласта. Измерения электрических потенциалов и концентраций ионов в клетках тканей корня (кукурузы, подсолнечника (Heliantus) и др. растений) демонстрируют, что из среды в симпласт анионы и калий поступают активно против электрохимического градиента, что обеспечивается работой протонной помпы на плазмалемме клеток ризодермы (рис. 6.24, Б). Ионы Са2+ и Mg2+ поступают в симпласт пассивно. Эти результаты соответствуют оценке, сделанной с использованием уравнения Нернста (см. табл. 6.1). В то же время выход из симпласта для всех исследованных ионов происходит пассивно (рис. 6.24, Б). Результаты этих экспериментов, ставших классическими, легли в основу концепции пассивного радиального перемещения и пассивного выхода в ксилему катионов и анионов. Гипотеза об активном выходе ионов из клеток стелярной паренхимы в сосуды ксилемы по типу секреции (A. Lauchli et al., 1971, 1978) была обоснована результатами оценки мест накопления поглощаемых ионов в клетках разных тканей корня. Концентрация ионов в клетках ксилемной паренхимы оказалась выше, чем в коровых клетках корня. Косвенным свидетельством работы насоса в плазмалемме стелярных клеток служат данные по их ультраструктуре. Клетки, окружающие ксилему, имеют относительно большой объем цитоплазмы, многочисленные митохондрии и везикулы, разветвленную сеть эндоплазматического ретикулума, что указывает на высокую метаболическую активность и способность обеспечить выкачивание протонов. Работа помпы на выходе из клеток стелярной паренхимы подтверждается и тем, что рН пасоки, имеющей кислую реакцию, активно регулируется. Через сегмент корня лука (АШит сера) прокачивали растворы фосфатного буфера рН 8,0 разной концентрации. Пропущенный через ксилему раствор собирали и измеряли его рН. Оказалось, что
Рис. 6.24. Перемещение ионов по симпласту (А) и механизм загрузки ксилемы (Б): А — Кат+ — катионы; Ан в протекающий по ксилеме буфер выделяются протоны, подкисляющие его до рН 6,5 — 7,5. При этом чем больше концентрация буфера, тем больше скорость выделения протонов, что свидетельствует об их активном выкачивании из клеток паренхимы с участием «стелярной помпы». Убедительным доказательством существования двух насосов и, как теперь выясняется, систем транспорта с различающимися характеристиками на внешней и внутренней границах симпласта стали данные о дифференцированном действии фитогормонов и ингибиторов на поступление и транслокацию ионов. Гормоны абсцизовая кислота и цитокинин (бензиладенин) не оказывали или оказывали очень малое воздействие на поступление ионов в корень, но ингибировали транслокацию. Циклогексимид (ингибитор синтеза белка) также не влиял на поглощение, но на 90 % ингибировал транслокацию. Такое же избирательное действие оказывал аналог фенилаланина — парафторадениналанин: поступление ионов в корень не угнеталось, но на 50 — 90 % снижался их транспорт в ксилему. Ингибитор синтеза РНК (6-метилпурин) также действует на транслокацию избирательно. Итак, оценка транскорневых химических потенциалов свидетельствует, что загрузка ксилемы ионами происходит пассивно (рис. 6.24, Б), но при этом на выходе из симпласта работает Н+-помпа. Кроме того, системы, транспортирующие ионы из симпласта в ксилему, находятся под строгим метаболическим контролем и более чувствительны к разного рода воздействиям. Важным является вопрос о том, какие транспортеры обеспечивают загрузку ксилемы. Результаты исследования на корнях ячменя (Hordeus vulgaris) свидетельствуют, что выход ионов в ксилему происходит пассивно через ионные каналы. В плазмалемме клеток стелярной паренхимы методом пэтч-кламп выявлено три типа катионных и три типа анионных каналов (рис. 6.24, А), которые различаются по селективности, проводимости и характеру потенциал-зависимости. Выходной селективный К Роль неселективного выходного катионного канала Кат Селективный входной К Загрузка ионами солей ксилемы — процесс электронейтральный, поэтому проницаемость плазмалеммы для анионов должна быть сопоставимой с проницаемостью для катионов. Анионные каналы, обнаруженные в клетках стелярной паренхимы корней ячменя, различаются по своим свойствам и обеспечивают как выход анионов из симпласта, так и их поступление из ксилемы обратно (рис. 6.24, А). Быстрый анионный выходной канал БАн Входной анионный канал Ан Итак, радиальная транслокация ионов связана с функционированием двух Н+-помп и двух различающихся совокупностей переносчиков и каналов, обеспечивающих транспорт ионов через плазмалемму из среды в симпласт и из симпласта в ксилему. Ансамбли транспортных белков контролируются разными механизмами. Ограниченность данных, о системах транспорта и регуляции транспортных процессов на уровне органа пока не позволяет разработать обоснованную в деталях модель, включающую «поглощение — радиальный транспорт — загрузка ксилемы». Сведения о том, что отдельные ионы могут транспортироваться разными путями (см. рис. 6.21, 22, 23), усложняют задачу разработки единой схемы поглощения и транспорта веществ через корень. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.068 сек.) |