АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Техническая результативность производства в длинном периоде

Читайте также:
  1. A) Количественный прирост используемых факторов производства.
  2. A) товаров и услуг, средств производства
  3. B) Компенсация непредвиденных затрат в процессе производства продукции.
  4. B) Широкая самостоятельность первичных хозяйственных звеньев сферы материального производства.
  5. Cопоставление совокупных расходов и объемов производства. Крест Кейнса. Механизм достижения равновесного объёма произврдства
  6. I. Затраты на управление и обслуживание строительного производства
  7. I. СРЕДСТВА ПРОИЗВОДСТВА
  8. II. Дисциплинарные производства в отношении сотрудников правоохранительной службы
  9. IV. ГРАФИК ПРОИЗВОДСТВА РАБОТ ПО ГИДРОИЗОЛЯЦИИ ТОННЕЛЬНОЙ ОБДЕЛКИ НА 1 ЦИКЛ (6 м станции)
  10. IV. ГРАФИК ПРОИЗВОДСТВА РАБОТ ПО РАЗРАБОТКЕ ГРУНТОВ В КОТЛОВАНЕ С ОТКОСАМИ (6 м котлована)
  11. IV. СВОДНЫЙ ГРАФИК ПРОИЗВОДСТВА РАБОТ ПО СООРУЖЕНИЮ ОДНОСВОДЧАТОЙ СТАНЦИИ МЕТРОПОЛИТЕНА ИЗ МОНОЛИТНОГО ЖЕЛЕЗОБЕТОНА (6 м станции)
  12. MFG/PRO – лучшее решение для крупных и средних промышленных предприятий с дискретным типом производства

Так как в длинном периоде меняется не только количество используемого в производстве труда, но и объем капитала, то производственную функцию в нем можно представить в виде множества производственных функций в коротком периоде, различающихся объемами капитала. Типичной формой производственной функции в длинном периоде является степенная функция вида: Q=ALαKβ, где А, α, β - положительные постоянные числа, характеризующие технологию производства. Широкое применение в экономическом анализе получила функция Кобба – Дугласа Q=LαK1-α, Информативную характеристику технологии можно получить, наблюдая за изменением выпуска при изменении объемов обоих факторов производства в одно и то же число раз, т.е. меняя масштаб производства. Результат воздействия на выпуск пропорционального изменения обоих факторов называют эффектом масштаба (returns to scale). Рост объемов труда и капитала в n раз может сопровождаться увеличением выпуска: 1) в n раз; 2) более, чем в n раз; 3) менее, чем в n раз. В первом случае говорят, что технология имеет неизменный эффект масштаба, во втором - растущий и в третьем - снижающийся. Поскольку показатели степеней в производственной функции Q = ALαКβ показывают, на сколько процентов возрастет выпуск при увеличении соответствующего фактора производства на 1%, то при α + β = 1 постоянный эффект масштаба; при α

+ β > 1 - растущий, а при α + β < 1 - снижающийся.

Рисунок 3. Карта изоквант при постоянном (а), растущем (б) и снижающемся (в) эффектах масштаба

Для графического представления производственной функции в длинном периода в двухмерном пространстве используют семейство линий равного выпуска. Линия равного выпуска, или изокванта, представляет множество различных сочетаний объемов труда и капитала, при которых достигается один и тот же объем выпуска. Из рисунка 3 следует, что 2 ед. продукции можно выпустить при трех различных комбинациях труда и капитала: K1 = 2, L1 = 2; K2 = 0, L2 = 4; K3 = 6, L3 = 1,8. Кроме этих трех комбинаций труда и капитала существует множество других, при которых по технологии, характеризующейся производственной функцией Q = L0,75K0,25, тоже можно произвести 2 ед. продукции. Соединив все точки, представляющие эти комбинации в системе координат K,L, получим изокванту (рисунок 3 –а). Аналогично строится изокванта для любого другого объема выпуска, в результате производственная функция в длинном периоде предстает в виде семейства или карты изоквант (рисунок 3). Поскольку производственная функция выражает зависимость между количеством используемых факторов и максимально возможным выпуском, то изокванта представляет множество сочетаний минимально необходимых объемов труда и капитала для заданного выпуска. Это означает, что изокванта не может иметь положительный наклон. Изокванта свидетельствует о взаимозаменяемости факторов производства: заданный объем продукции можно эффективно произвести при различных сочетаниях труда и капитала (различной капиталовооруженности труда). В какой пропорции один из факторов можно заменить другим, зависит от исходной капиталовооруженности труда.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)