|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Внутреннее ориентирование снимка. Наблюдение и измерение цифровых изображенийНаблюдение и измерение цифровых изображений
Цифровое изображение хранится в памяти компьютера, в общем случае, в виде прямоугольной матрицы, элементы Рис.1.1 Координаты центров пикселей определяют в левой прямоугольной системе координат оC xC уC (рис.1.1a), началом которой является левый верхний угол цифрового изображения и в правой - оC xC уC (рис.1.1b), началом которой левый нижний угол цифрового изображения. В обеих системах координат ось x параллельна строкам, а ось y – столбцам матрицы цифрового изображения. Левая система координат принята при записи изображений в файл во всех форматах и используется в большинстве программ по обработке изображений. В фотограмметрии традиционно применяется правая система координат снимка, и в большинстве современных цифровых фотограмметрических систем используют именно эту систему координат. Пиксельные координаты (единицей измерения, в этом случае, является пиксель) центров пикселей в системе координат цифрового изображения оC хC уC определяют по формулам:
Для измерения координат точек цифрового изображения его визуализируют на экране дисплея. Если пиксель изображения на экране дисплея соответствует пикселю исходного цифрового изображения, то с помощью “мыши” или клавиатуры компьютера можно навести измерительную марку, формируемую в виде цифрового изображения на экране дисплея, на точку изображения с точностью до одного пикселя. Для получения подпиксельной (субпиксельной) точности можно увеличить матрицу изображения на экране монитора относительно исходного цифрового изображения. В этом случае каждый пиксель исходного изображения будет изображаться матрицей n×n пикселей, численное значение всех элементов a'ij которой будут равны численному значению элемента Пиксельные координаты точек увеличенного изображения можно измерить с точностью до 1/n пикселя исходного изображения (рис.1.2.). Рис. 1.2 Пиксельные координаты (в пикселях исходного изображения) элемента a'ij увеличенного изображения определяют по формуле:
в которых: i,j - номера строки и столбца элемента матрицы исходного изображения, в котором находится элемент a'ij увеличенного изображения: i’,j’ - номера строки и столбца элемента a`ij подматрицы n×n; n – коэффициент увеличения изображения. Например, для элемента a’23 (рис.1.2) пиксельные координаты: Значения физических координат центров пикселей цифрового изображения можно определить по значениям их пиксельных координат, если известны физические размеры стороны пикселя изображения Δ (предполагается, что пиксель имеет форму квадрата). Значения физических координат определяют по формулам:
Например, координаты центра пикселя, соответствующего элементу a’23 (рис.1.2) при величине Δ=20 мкм будут равны хc = 34 мкм и yc = 50 мкм. В некоторых цифровых системах начало системы координат цифрового изображения оc хc уc выбирают в центре пикселя, расположенного в нижнем левом углу цифрового изображения (рис.1.3). Рис.1.3 В этом случае значения пиксельных координат вычисляют по формулам:
при измерениях с точностью до пикселя и по формулам:
при измерениях с подпиксельной точностью. Например, для того же элемента a’23 (рис.1.3) пиксельные координаты равны: Рассмотренный выше метод измерения цифрового изображения с подпиксельной точностью требует его увеличения на экране дисплея компьютера. Однако, даже при увеличении цифрового изображения только в два раза, на экране дисплея исходный аналоговый снимок изображается с весьма значительным оптическим увеличением. Так, например, снимок, преобразованный на сканере, с размером пикселя 14 мкм на экране дисплея с размером зерна 0.28 мм при увеличении цифрового изображения снимка в 2 раза имеет оптическое увеличение 40 раз. Такое увеличение приводит к значительному ухудшению изобразительных свойств наблюдаемого изображения и, как следствие, к снижению точности наведения измерительной марки на измеряемые объекты на изображении. С целью обеспечения возможности измерения координат точек цифрового изображения с подпиксельной точностью без увеличения исходного изображения разработан метод измерения цифровых изображений, в котором цифровое изображение снимка может смещаться относительно неподвижной измерительной марки с шагом в n – раз меньшим размера пикселя. Принцип измерения координат точек цифрового изображения по этому методу иллюстрируется на рис.1.4. Рис. 1.4
На рис.1.4а представлен фрагмент исходного цифрового изображения с измерительной маркой (в виде креста) и точкой изображения m, координаты которой необходимо измерить. Как следует из этого рисунка, центр изображения измерительной марки не совпадает с изображением точки m, причем разности значений их пиксельных координат составляют величины DxP и DyP. Для совмещения центра изображения измерительной марки с точкой m можно создать фрагмент цифрового изображения снимка, в котором координаты начала системы координат o’с x’с y ’с будут иметь значения Создание такого фрагмента цифрового изображения производится следующим образом. По координатам центра каждого пикселя фрагмента изображения x’pi, y’pi определяют значения координат его проекции xpi, ypi в системе координат ос хс ус исходного изображения. Их значения определяют по формулам:
Затем по значениям координат xpi, ypi находят ближайшие к изображению точки i, соответствующей центру пикселя Рис. 1.5 создаваемого фрагмента цифрового изображения, четыре пикселя исходного цифрового изображения, например, M, K, L, N (рис.1.5) Далее методом билинейного интерполирования определяют значения оптической плотности i -го пикселя создаваемого фрагмента изображения по формуле:
в которой
Таким же образом формируются все элементы (пиксели) создаваемого фрагмента цифрового изображения. На экране дисплея, на визуализированном фрагменте созданного цифрового изображения центр измерительной марки будет совмещен с изображением точки m. Пиксельные координаты точки m изображения в системе координат исходного изображения определяются по формулам 1.6. Необходимо отметить, что создание фрагмента цифрового изображения требует значительных вычислительных процедур. Поэтому для достижения эффекта перемещения изображения на экране дисплея относительно марки в “реальном масштабе” времени фрагмент изображения не должен иметь большие размеры. В случае если для измерений используются цветные цифровые изображения при формировании элементов создаваемого изображения методом билинейного трансформирования по формулам (1.7) определяются интенсивности красного (R), зеленого (G) и синего (В) компонентов цветного изображения. Внутреннее ориентирование снимка
Для обеспечения возможности определения координат точек в системе координат снимка по значению их координат в системе координат цифрового изображения выполняется процесс внутреннего ориентирования снимка. В результате выполнения этого процесса определяются параметры, характеризующие положение и ориентацию системы координат снимка Sxyz в системе координат цифрового изображения ocxcyc, а так же параметры, позволяющие исключить влияние систематической деформации фотоматериала, на котором был получен исходный аналоговый снимок (рис.1.6).
Рис.1.6 Для определения параметров внутреннего ориентирования снимка измеряют координаты изображений координатных меток снимка в системе координат цифрового изображения oC xC yC. Выбор метода определения параметров внутреннего ориентирования снимка зависят от методики фотограмметрической калибровки съемочной камеры. Если в результате фотограмметрической калибровки съемочной камеры были определены координаты координатных меток в системе координат съемочной камеры (снимка) Sxyz, то для определения координат точек в системе координат снимка по значениям их координат в системе цифрового изображения используют формулы аффиного преобразования координат:
или в развернутом виде:
Здесь, ao,a1,a2,bo,b1,b2 – параметры аффинных преобразований; ao,bo – координаты начала системы координат снимка в измерительной системе координат, a1,a2,b1,b2 – параметры, характеризующие ориентацию системы координат снимка в измерительной системе координат, разномасштабность (деформация фотоматериала) вдоль осей системы координат снимка и их неперпендикулярность. Таким образом, формулы (1.8) позволяют не только определить положение и ориентацию системы координат снимка в системе координат цифрового изображения, но и учесть систематические искажения снимка, возникающие из-за деформации фотопленки, на которой был получен снимок. Параметры аффинного преобразования ai, bi можно определить по координатам Для определения параметров ai,bi для каждой метки, измеренной на цифровом изображении, составляют уравнения:
Полученную систему уравнений решают по методу наименьших квадратов и определяют в результате решения значения параметров ai, bi. Для их определения необходимо не менее 3 координатных меток, не лежащих на одной прямой. В практике фотограмметрии возникает обратная задача: определение значений координат точек в измерительной системе координат по координатам этих точек, заданным в системе координат снимка. Такое преобразование координат выполняется по формулам:
или
В формулах (1.11) и (1.12) Ai, Bi – элементы обратной матрицы Р-1. Для цифровых изображений значение пиксельных координат точек xp,yp определяют по формулам:
В случае, если при калибровке съемочной камеры определялись калиброванные расстояния между координатными метками Lx, Ly (рис.1.7), для определения координат Рис.1.7
Здесь aо, bо – координаты начала системы координат снимка o’ в измерительной системе координат Параметры внутреннего ориентирования aо, bо, φ, kx, ky определяют по измерениям координат координатных меток. Параметры aо, bо вычисляют как координаты точки пересечения прямых линий, проведенных через координатные метки 1-2 и 3-4 по формулам:
где
Значение угла φ определяют по формуле:
Коэффициенты деформации снимка вычисляют по формулам:
в которых Lx,Ly – калиброванные значения расстояний между координатными метками (рис.1.7). L’x,L’y - вычисленные значения расстояний между соответственными координатными метками, на основе измеренных координат этих меток.
Для обратного перехода из системы координат снимка в измерительную систему координат используют формулы:
Если отсутствуют данные о значениях расстояний между координатными метками, определение параметров внутреннего ориентирования производится по формулам (1.14). При этом значения коэффициентов деформации принимаются равными kx = ky = 1 получения координат соответствующих точек объекта. В случае если снимки были получены цифровой камерой, то процесс внутреннего ориентирования снимка не выполняется, так как измерения координат точек снимка выполняются непосредственно в системе координат снимка (рис.1.8).
Рис 1.8
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.012 сек.) |