АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ФормулаТорричелли

Рассмотрим два сечения (на уровне h1 и h2), напишем для них ур-е Бернулли:

,

Т.к. p1=p2=Атм., то:

из ур-я неразрывности следует, что ,

Если S1>>S2, то , и членом можно пренебречь:

,

это выражение и есть формула Торричелли.

 

21. Внутреннее трение (вязкость). Режимы течения.

Вязкость – св-во реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой.

Градиент скорости – величина показывает, как быстро меняется скорость при переходе от слоя к слою, в направлении перпендикулярном движению слоёв, т.о. сила трения:

,где вязкость – коэффициент пропорциональности, зависящий от природы жидкости.

Режимы течения:

1) Ламинарное – течение, при котором каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними.

Это течение наблюдается при низких скоростях её движения.

2) Турбулентное – течение, при котором вдоль потока происходит интенсивное вихреобразование, и перемешивание жидкости.

Частицы жидкостей приобретают составляющие скоростей, перпендикулярны течению, поэтому они могут переходить из одного слоя в другой. Из-за большого градиента скоростей у поверхности трубы происходит образование вихрей.

Вязкость жидкости – перенос импульса между контактирующими слоями. - кинематическая вязкость.

Reчисло Рейнольдса, характер движения завит от него:

Re<=1000, то ламинарное

1000<=Re<=2000, переход от ламинарного к турбулентному.

Re=2300, то турбулентному

 

22. Метод Стокса.

Основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

На шарик, падающий в жидкости вертикально вниз, действуют 3 силы:

Сила тяжести: (плотность шарика)

Сила Архимеда: (плотность жидкости)

Сила сопротивления (Стокса):.

При равномерном движении шарика:

,

проекции:

отсюда:

 

23. Метод Пуазейля.

Основан на ламинарном течении жидкости в тонком капилляре.

В жидкости мысленно выделим цилиндрический слой радиусом r и толщиной dr, сила внутреннего трения, действующая на боковую поверхность этого слоя равна: ,

где dS – боковая поверхность, есть (-), т.к. при возрастании радиуса скорость уменьшается.

Сила вязкости уравновешивается силой давления, действующей на основание:

За время t из трубы вытечет жидкость объёмом:

.

 

24. Поверхностное натяжение.

Для жидкости характерен ближний порядок расположения частиц, т.е. их упорядоченное расположение, повторяющееся на расстояниях, сравнимых с межатомными.

Радиус молекулярного действия (r=10-9м) – С расстояния более этого радиуса силами межмолекулярного взаимодействия можно пренебречь.

Результирующие силы всех молекул поверхностного слоя оказывают на жидкость давление, называемое молекулярным, или внутренним.

У молекул на поверхности сущ-ет дополнительная П. энергия, называемая поверхностной энергией. ,

где сигма – поверхностное натяжение.

,

где - сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости. ,

эта работа совершается за счёт уменьшения поверхностной энергии, т.е.:

,

т.е. поверхностное натяжение равно силе поверхностного натяжения, действующей на единицу длины контура поверхности жидкости.

Поверхностно-активные – в-ва, влияющие на поверхностное натяжение жидкости.

(мыло - , соль/сахар - )

 

25. Смачивание и не смачивание.

Краевой угол – угол между касательными к поверхности жидкости и твёрдого тела.

Условие равновесия капли является равенство нулю суммы проекций сил поверхностного натяжения на направление касательной к поверхности твёрдого тела: ;

,из этого условия следует, что:

смачивание

не смачивание

Условие равновесия жидкости:

.

Полное смачивание:

Полное не смачивание:

 

26. Давление под искривлённой поверхностью жидкости. Формула Лапласа.

Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление, т.к. действуют силы поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой – отрицательно. На каждый бесконечно малый элемент длины контура действует сила поверхностного натяжения: ,

касательная к поверхности сферы.

Разложив на две составляющие , видим, что геометрическая сумма сил равна нулю, т.е. равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения. И равна:

Это и есть формула избыточного (добавочного) давления для выпуклой поверхности.

Для вогнутой:

Эти две формулы являются частными случаями формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны: .

 

27. Капиллярные явления.

Капиллярность – явление изменения высоты жидкости в капиллярах.

жидкость в капилляре поднимается или отпускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) уравновешивается избыточным давлением , т.е.:

, т.к. , то:

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.012 сек.)