|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Генератор псевдослучайных чисел ANSI X9.17Один из наиболее сильных генераторов псевдослучайных чисел описан в ANSI X9.17. В число приложений, использующих эту технологию, входят приложения финансовой безопасности и PGP. Алгоритмом шифрования является тройной DES. Генератор ANSI X9.17 состоит из следующих частей: 1. Вход: генератором управляют два псевдослучайных входа. Один является 64-битным представлением текущих даты и времени, которые изменяются каждый раз при создании числа. Другой является 64-битным начальным значением; оно инициализируется некоторым произвольным значением и изменяется в ходе генерации последовательности псевдослучайных чисел. 2. Ключи: генератор использует три модуля тройного DES. Все три используют одну и ту же пару 56-битных ключей, которая должна держаться в секрете и применяться только для генерации псевдослучайного числа. 3. Выход: выход состоит из 64-битного псевдослучайного числа и 64-битного значения, которое будет использоваться в качестве начального значения при создании следующего числа.
Тогда: Ri = EDEK1,K2 [ EDEK1,K2 [ DTi] Vi ]Vi+1 = EDEK1,K2 [ EDEK1,K2 [ DTi] Ri]Схема включает использование 112-битного ключа и трех EDE-шифрований. На вход подаются два псевдослучайных значения: значение даты и времени и начальное значение очередной итерации, на выходе создаются начальное значение для следующей итерации и очередное псевдослучайное значение. Даже если псевдослучайное число Ri будет скомпрометировано, вычислить Vi+1 из Ri невозможно, и, следовательно, следующее псевдослучайное значение Ri+1, так как для получения Vi+1 дополнительно выполняются три операции EDE.
4. Лекция: Алгоритмы симметричного шифрования. Часть 3. Разработка Advanced Encryption Standard (AES): Рассматривается разработка нового стандарта алгоритма симметричного шифрования – AES. Представлены критерии выбора стандарта и дана сравнительная характеристика пяти финалистов; описываются атаки на алгоритмы с уменьшенным числом раундов и вводится понятие резерва безопасности. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |