АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ЦИФРОВЫЕ АВТОМАТИЧЕСКИЕ СИСТЕМЫ

Читайте также:
  1. I. Формирование системы военной психологии в России.
  2. II. Цель и задачи государственной политики в области развития инновационной системы
  3. II. Экономические институты и системы
  4. IV. Механизмы и основные меры реализации государственной политики в области развития инновационной системы
  5. А). Системы разомкнутые, замкнутые и комбинированные.
  6. А. И. Герцен – основатель системы вольной русской прессы в эмиграции. Литературно-публицистическое мастерство
  7. Абиотические компоненты экосистемы.
  8. Абстрактные линейные системы
  9. Автоматизированные системы контроля за исполнением документов
  10. Автоматизированные системы контроля и учета электроэнергии (АСКУЭ).
  11. Автоматизированные системы регистрации
  12. Автоматизированные системы управления (АСУ).

 

Цифровые автоматические системы (ЦАС)реализуются на базе миниЭВМ или микропроцессоров. По сравнению с традиционными (аналоговыми) они обеспечивают квантование регулируемой величины и регулирующего воздействия, причем как по уровню, так и по времени.

Квантование по уровню необходимо из-за ограниченной разрядности входных и выходных преобразователей ЦАС. Квантование по времени — из-за ограниченного быстродействия ЭВМ. В результате управляющие воздействия выдаются через определенные промежутки времени (интервалы дискретности).

Преимущества ЦАС: стабильность характеристик и отсутствие дрейфа; высокая точность и разрешающая способность; возможность реализации очень сложных алгоритмов (за счет программного обеспечения); возможность управления медленно меняющимися процессами; экономичность за счет возможности иметь до 50...100 контуров регулирования; помехоустойчивость и др.

Цифровые автоматические системы на базе миниЭВМ (рис. 5.4, а). На базе мини-ЭВМ создаются централизованные НАС, в которых используют разнообразные периферийные устройства связи с ОУ и оператором.

Входные (ВВ), например аналого-цифровые, и выходные (ВД), например цифро-аналоговые, преобразователи позволяют вводить в ЭВМ аналоговую и цифровую (дискретную) информацию, а также вырабатывать регулирующие воздействия на аналоговые исполнительные механизмы (ИМ) и регуляторы (Р).

Станция управления (СтУ) служит для сопряжения средств вычислительной техники с исполнительным механизмом (ИМ) и регулятором (Р). ЭВМ решает большое число задач управления. Это требует разработки сложных операционных систем реального времени, а также специальных языков программирования.

Рис. 5.4. Функциональные схемы цифровой (а) и микропроцессорной (б) автоматических систем

Микропроцессорные НАС. По сравнению с ЦАС на миниЭВМ ни надежнее и дешевле за счет функциональной и пространственной децентрализации. Первое обстоятельство увеличивает надежность путем резервирования отдельных элементов ЦАС, второе — сокращает длину коммуникаций за счет приближения устройства управления к ТП.

Микропроцессорная ЦАС (МП-регулятор) представляет собой микроЭВМ со всеми необходимыми для выполнения функций регулирования устройствами (рис. 5.4, б).

Все модули регулятора объединены общей магистралью, и их число можно изменять. При этом отдельные модули сами могут содержать микропроцессор (МП). Программы распределяют в памяти так, чтобы при исчезновении питания не потерять постоянную информацию, в том числе и операционную систему. В простейшем случае операционной системы может и не быть, и тогда ЭВМ, решив одну задачу, вновь переключается на ее начало.

Перепрограммируемое запоминающее устройство (ППЗУ) хранит структурную схему и параметры настройки ЦАС. Эти данные определяют, какие программы постоянного запоминающего устройства (ПЗУ) и в какой последовательности выполняются.

Содержимое оперативного запоминающего устройства (ОЗУ) — информация, меняющаяся в процессе работы регулятора.

Для ВВ и ВД используют преобразователи с 12-разрядной разрешающей способностью. Через СтУ осуществляют сопряжение ЦАС с внешними устройствами. Данные передают последовательным или параллельным кодом. Число контуров для МП ЦАС — до 16.

По условиям работы человек должен иметь возможность вмешиваться в работу ЦАС. Кроме того, управляющие сигналы ЦАС (они квантованы по уровню и времени) должны быть преобразованы в аналоговые. Эти задачи решают с помощью СтУ. Кроме того, СтУ запоминает задающие и регулирующие воздействия в промежутках времени между получением новых значений от ПАС, индицирует регулируемую переменную, задающее и регулирующее воздействия, обеспечивает безударный переход из «автоматического» режима в «дистанционный» и обратно, а также и другие функции.

На базе микроЭВМ можно строить децентрализованные ЦАС, которые дешевле и надежнее рассмотренных ранее.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)