АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Геометрия сверла

Читайте также:
  1. Аналитическая геометрия
  2. Геометрия
  3. Геометрия
  4. Геометрия метчиков
  5. Геометрия резцов
  6. Дисперсионное пространство и геометрия дифракции
  7. Начертательная геометрия. Инженерная графика.
  8. Недостатки конструкции и методы улучшения геометрических параметров сверла
  9. Ружейные сверла
  10. Фрактальная геометрия природы
  11. Хирургические сверла ADIN

(рис.3.)

Угол конуса при вершине 2φ определяет производительность и стойкость сверла. Играет роль главного угла в плане, подобно ему влияет на составляющие силы резания, длину режущей кромки и параметры сечения срезаемого слоя.

При уменьшении сила подачи снижается, а крутящий момент возрастает. Длина режущей кромки увеличивается – отвод тепла улучшается. Толщина стружки уменьшается. Снижается прочность вершины сверла. Угол выбирается экспериментально в зависимости от обрабатываемого материала.

 

 

Рис.3. Геометрия спирального сверла

 

Угол наклона винтовой стружечной канавки ω измеряется на наружном диаметре сверла

, где

Pz - шаг винтовой стружечной канавки.

От угла ω зависят:

- сход стружки, с увеличением этого угла отвод стружки улучшается;

- прочность и жесткость сверла, с увеличением ω жесткость на изгиб снижается, а жесткость на кручение возрастает;

- величина переднего угла, с увеличением ω передний уголвозрастает.

Международная организация по стандартизации ISO рекомендует три типа сверл:

- тип Н для обработки хрупких материалов с ω = 10…160;

- тип N для обработки материалов, дающих элементную стружку с

ω = 25…350;

- тип W для обработки вязких материалов (алюминий, медь и т.п.) с

ω = 35…450

Передний угол γ главных режущих кромок в рабочей плоскости 0-0 (рис.3.) для каждой точки режущей кромки равняется углу наклона винтовой канавки на диаметре рассматриваемой точки:

, где

ωА –угол наклона винтовой канавки в данном сечении.

Передний угол в главной секущей плоскости N-N

,

Как видно из формулы, передний угол зависит от угла ω и уменьшается на режущей кромке от периферии к центру. На поперечной кромке передний угол имеет отрицательные значения.

 

Задний угол a принято рассматривать в рабочей плоскости О-О (Рис.3.).

Кинематический задний угол aρ (Рис.4.) определяют как угол между винтовой траекторией результирую-щего движения резания и касательной к задней поверхности aρi = ai – μi, где μi – угол скорости резания

Угол скорости резания увеличивается с ростом подачи и уменьшением диаметра рассматриваемой точки. Для выравнивания кинематических задних углов инструментальный задний угол делают переменным вдоль режущей кромки. На периферии он равен 8…140, а у сердце-вины 20…250

Рис.4. Геометрия задней поверхности сверла

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)