АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Анаэробное окисление: нитратное и сульфатное дыхание

Читайте также:
  1. Глава II. ДЫХАНИЕ РАДИ ЖИЗНИ
  2. Глава VI. ДЫХАНИЕ ЧЕРЕЗ НОЗДРИ И ДЫХАНИЕ ЧЕРЕЗ РОТ
  3. Глава VIII. КАК УСВОИТЬ СЕБЕ ПОЛНОЕ ДЫХАНИЕ
  4. Глава XV. ДАЛЬНЕЙШИЕ ЯВЛЕНИЯ, СВЯЗАННЫЕ С ПСИХИЧЕСКИМ ДЫХАНИЕМ ЙОГОВ
  5. Глава XVI. ДУХОВНОЕ ДЫХАНИЕ ЙОГОВ
  6. Глава XVI. ДУХОВНОЕ ДЫХАНИЕ ЙОГОВ
  7. Дыхание
  8. Дыхание
  9. Дыхание
  10. Дыхание
  11. ДЫХАНИЕ МИКРООРГАНИЗМОВ

Анаэробное окисление встречается только среди представителей царства прокариот. Оно присуще микроорганизмам, способным переходить от аэробного образа жизни к анаэробному, используя в качестве конечного акцептора электронов как молекулярный кислород, так и азот нитратов и серу сульфатов.

Типичным примером таких микроорганизмов являются денитрифицирующие бактерии.

Дыхательная цепь денитрифицирующих бактерий включает все основные ферменты-переносчики электронов, характерные для дыхательной цепи аэробов. Только конечное звено цитохромной системы – цитохромоксидаза замещена у них на нитратредуктазу, катализирующую перенос электронов на азот нитратов. Нитратредуктазы относятся к индуцибельным ферментам, синтезируемым клеткой только в анаэробных условиях при наличии нитратов в среде.

Процесс денитрификации состоит из 4 восстановительных стадий, каждая из которых катализируется соответствующей нитратредуктазой. На первой стадии происходит восстановление нитратов в нитриты:

азот+5 принимая 2 протона и 2 электрона восстанавливается в азот нитритов NО2- +3:

3- + 2e- + 2Н+ →NО2- + Н2О.

Далее нитраты восстанавливаются до оксида азота (II), затем до оксида азота (I) и в конечном итоге до молекулярного азота:

 

2- + e- + Н+→ NО + ОН-

2NО + 2e- + 2Н+→ N2О + Н2О

 

N2О + 2e- + 2Н+ →N2 + Н2О

Использование азота в качестве акцептора электронов позволяет денитрифицирующим бактериям полностью окислять органические вещества субстрата до конечных продуктов СО2 и Н2О. Поэтому энергетический выход нитратного дыхания практически приближается к обычному аэробному окислению.

Поскольку денитрофицирующие бактерии переключаются на нитратное дыхание, только попадая в анаэробные условия, приспособление их к анаэробному образу жизни следует считать эволюционно вторичным и рассматривать как возврат к анаэробиозу от типичного аэробного окисления.

К анаэробному окислению способны и сульфатвосстанавливающие бактерии, относящиеся к родам Desulfotomaculum, Desulfonema, Desulfovibrio и др. Пути получения энергии у сульфатвосстанавливающих бактерий могут быть разными. Это процесс брожения органических веществ, сопровождающиеся образованием АТФ в результате субстратного фосфорилирования, сульфатное дыхание, предусматривающее окисление органических веществ в анаэробных условиях с переносом электронов на серу сульфатов. Бактерии этой гетерогенной группы способны получать энергию также за счет окисления молекулярного водорода, сопряженного с востановлением сульфатов.

Способность сульфатвосстанавливающих бактерий использовать молекулярный водород для получения энергии позволяет отнести их к анаэробным хемолитотрофным микроорганизмам.

В процессе окисления молекулярного водорода получают энергию и метанообразующие бактерии, использующие в качестве акцептора электронов углекислый газ. Для бактерий этой группы СО2 выступает одновременно источником углерода и акцептором электронов:

 

2 + СО2 →СН4 + 2Н2О.

 

Изучение различных типов катаболизма прокариот дает возможность предположить, что именно совершенствование способов получения энергии клеткой лежит в основе эволюции представителей этого царства.

Наиболее древней группой прокариот являются анаэробные бактерии, добывающие энергию в процессах брожения за счет субстратного фосфорилирования.

Существенным этапом на пути эволюции прокариот следует считать появление фототрофных бактерий, использующих в качестве основного источника энергии солнечный свет и в качестве основного источника углерода СО2.

Развитие фотосинтетиков-аэробов, в первую очередь цианобактерий, привело к обогащению среды молекулярным кислородом. В клетке аэробных бактерий сложилась еще одна система электроного транспорта и сопряженный с ней механизм фосфорилирования – окислительное фосфорилирование.

В настоящее время в царстве прокариот мы встречаемся с поразительным разнообразием типов катаболизма. Однако доминирующим и эволюционно господствующим типом катаболизма, несомненно, являтся аэробное окисление со всем его многообразием доноров и акцепторов.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)