АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Структуры прокариотной клетки

Читайте также:
  1. II. Типичные структуры и границы
  2. III. Анализ результатов психологического анализа 1 и 2 периодов деятельности привел к следующему пониманию обобщенной структуры состояния психологической готовности.
  3. Абсолютные и относительные показатели изменения структуры
  4. Абсолютные и относительные показатели изменения структуры
  5. Абстрактные структуры данных
  6. Адаптивные и механистические организационные структуры
  7. Адаптивные структуры
  8. Адаптивные структуры управления
  9. Адаптивные структуры управления
  10. Алгоритм определения предпочтительной организационной структуры управления диверсифицированной фирмы
  11. Анализ ассортимента и структуры продукции
  12. Анализ возможностей корпорации анализ продукции, анализ внутренней структуры, анализ внешнего окружения

Клетка прокариот имеет все структурные компоненты, присущие любой клетке. Среди структур бактериальной клетки различают:

основные структуры – клеточную стенку, цитоплазматическую мембрану, цитоплазму с различными цитоплазматическими включениями и нуклеоид;

временные структуры – капсулу, жгутики, фимбрии, у некоторых представителей бактерий – эндоспоры.

Клеточная стенка. Клеточная стенка является обязательным структурным элементом бактериальной клетки, исключение составляют микоплазмы и L-формы бактерий. Обладая высокой степенью эластичности и упругости, она выдерживает внутрикле­точное давление. Клеточная стенка служит механическим барьером между протоплазмой и внешней средой, придает клеткам определенную форму, определяет способность удерживания или вымывания красителей, дает возможность клетке существовать в гипотонических растворах (рис. 2).

Рис. 2 – Схематическое строение прокариотной клетки (Шлегель, 1972)

А – поверхностные структуры: 1 – клеточная стенка; 2 – капсула, или слизистый слой;
3 – жгутики; 4 – фимбрии; Б – цитоплазматические структуры: 5 – цитоплазматическая мембрана; 6 – цитоплазма; 7 – нуклеоид; 8 – рибосомы;
9 – хроматофоры; 10 – везикулы; 11 – пластинчатые тилакоиды; 12 – трубчатые тилакоиды; 13 – мезосома; 14 – аэросомы; 15 – ламеллярные структуры; 16 – карбоксисомы; В – запасные вещества: 17 – полифосфаты;
18 – полисахариды; 19 – поли- b -оксимасляная кислота; 20 – включения серы; 21, 22 – жировые капли

 

Поверхностные макромолекулы внешней стороны клеточной стенки выполняют разнообразные функции, такие, как:

– специфическая рецепторная для фагов и колицинов;

– антигенная роль;

– функция межклеточного взаимодействия при коньюгации и при взаимодействии с клетками тканей высших организмов.

Клеточная стенка грамотрицательных (грациликутных) бактерий значительно расширяет круг функций, так как осуществляет роль дополнительного клеточного барьера, имеет дополнительные специфические и неспецифические каналы (диффузные поры), препятствует проникновению в клетку токсических веществ.

Без специальных методов окраски рассмотреть клеточную стенку бактерий под световым микроскопом не удается. На долю клеточной стенки приходится от 5 до 50% сухой массы клетки. Толщина данной структуры составляет 10–80 нм. Клеточной стенкой или клеточной оболочкой называют структуры, расположенные над цитоплазматической мембраной. Различают также поверхностные дополнительные структуры (капсулы, жгутики, фимбрии и т.п.).

По химическому составу клеточная стенка прокариот коренным образом отличается от оболочки клеток эукариот. Основным компонентом клеточной стенки бактерий является муреин, относящийся к классу пептидогликанов. Муреин – гетерополимер, образованный чередующимися остатками N-ацетил-N-глюкозамина и N-ацетилмурамовой кислоты, соединенными b-1,4-гликозидными связями. N-ацетилмурамовая кислота соединена с пептидом, в состав которого входят 4–6 различных аминокислот. Основу пептидного компонента муреина составляют тетрапептиды, образованные обычно L-аланином, D-глутаминовой кислотой, специфической для прокариот мезодиаминопимелиновой кислотой (мезо- ДАП) и D-аланином. У некоторых бактерий мезодиаминопимелиновая кислота замещена на L-лизин, либо L- или D-орнитин, либо на 2,4-диаминомасляную кислоту.

По содержанию муреина и специфике дополнительных компонентов, включенных в муреиновую сеть, все бактерии подразделяются на две группы: грамположительные (фирмакутные) и грамотрицательные (грациликутные).

В 1884 г. X. Грам предложил метод окраски бактерий, вошедший в практику микробиологии как один из диагностических признаков. Метод основан на различной способности микробов удерживать красители трифенилметанового ряда – кристаллвиолет и генцианвиолет в клетке. При окрашивании фиксированных мазков раствором фиолетового красителя и закреплении его раствором йода в калий-йод, грамположительные бактерии образуют стойкое соединение красителя с йодом и при последующей обработке мазков спиртом или ацетоном не раскрашиваются, сохраняя фиолетовую окраску. Грамотрицательные бактерии не образуют стойкого соединения красителя с йодом, полностью обесцвечиваются спиртом или ацетоном, и мазки их подлежат дополнительной окраске, обычно водным раствором фуксина. Способность микроорганизмов окрашиваться по методу Грама или утрачивать окраску объясняется спецификой химического состава и ультраструктуры их клеточной стенки.

Клеточная стенка грамположительных бактерий достаточно массивна, толщина ее достигает 20–80 нм. Она имеет гомогенную губчатую структуру, пронизанную порами, и плотно прилегает к цитоплазматической мембране. Муреин в клеточной стенке грамположительных бактерий составляет от 50 до 90% ее сухой массы. С муреином связаны тейхоевые кислоты. Они представляют собой полимеры трехатомного спирта глицерина или пятиатомного спирта рибита, остатки которых соединены фосфодиэфирными связями. Одна молекула тейхоевой кислоты обычно включает от 7 до 15 спиртовых остатков. Свободные гидроксильные группы в молекулах спиртов могут быть замещены остатками D-аланина, глюкозы, N-ацетилглюкозамина или N-ацетил-галактозамина. Глицеринтейхоевые кислоты нередко связаны с липидом, находящимся в цитоплазматической мембране.

Тейхоевые кислоты оказывают влияние на катионный обмен клетки. У некоторых бактерий они принимают участие в регуляции активности автолитических ферментов – гидролаз, способных разрушать собственную оболочку. В составе клеточной стенки грамположительных бактерий в небольшом количестве обнаружены полисахариды, белки и липиды. Оболочка фирмакутных – эффективный ионообменник с высокой поглотительной способностью и может содержать большое количество катионов. Поглотительная способность оболочек фирмакутных сопоставима с лучшими промышленными катионитами.

Клеточная стенка грамотрицательных (грациликутных) бактерий многослойна, отличается структурной и функциональной сложностью, толщина ее составляет 14–17 нм. По химическому составу она более разнообразна. Эта группа прокариот отражает один из прогрессивных путей эволюции бактерий. Для них характерно наличие пространства между ЦПМ и клеточной стенкой, появление дополнительной внешней мембраны с большей структурной сложностью, меньшая доля муреина, входящего в состав муреинового мешка – саккулы.

Внешний слой клеточной стенки – наружная мембрана – образована фосфолипидами, липополисахаридами – ЛПС, липопротеидами и белками. Основной фракцией наружной мембраны являются липиды, составляющие в среднем 22% сухой массы клеточной стенки.

По строению наружная мембрана имеет типичную трехслойную организацию, характерную для элементарных мембран. Наружная мембрана отличается большей жесткостью и более сложным химическим составом. Основу внешней мембраны составляют липиды (липополисахарид (ЛПС), липопротеины, фосфолипиды) и белки. ЛПС составляет около 30–40% поверхности мембраны, локализован во внешнем лепестке мембраны. ЛПС – вещество с высокой антигенной активностью, О-антиген или соматический бактериальный антиген, вызывает выработку антител иммунной системой макроорганизма.

ЛПС большинства бактерий токсичен для животного организма, то есть является эндотоксином. ЛПС вызывает лихорадку, лейкоцитоз, токсический шок и даже смерть.

Липопротеин Брауна – основной компонент внешней мембраны, имеет молекулярную массу около 7000, состоит из 58 аминокислот.
В липопротеине повторяется 15 аминокислот. Первичная структура расшифрована Брауном, предполагается эволюционное закрепление дупликации гена. Отсутствие или нарушения в строении липопротеина влияют на функции внешней мембраны.

Белки основы внешней мембраны или порины составляют до 80% белков мембраны, выполняют функции формирования гидрофильных пор. Белковый матрикс оболочек грациликутных определяет прочность и форму клеток. Белки основы выполняют важную роль в транспорте элементов питания, служат рецепторами для фагов и колицинов. Белки порины играют большее значение для прокариот естесственных мест обитания, чем для культивируемых.

Вторую группу белков составляют минорные белки внешней мембраны. Они выполняют транспортные и рецепторные функции. Полифункциональность – основное характерное свойство белков мембраны. Белки определяют культуральные свойства бактерий.

Внешняя мембрана содержит двухвалентные катионы, которые удаляют с помощью ЭДТА или воды. Внешняя мембрана обладает трансмембранным потенциалом, она отрицательно заряжена со стороны периплазмы. Величина потенциала зависит от катионного состава среды; обычно оценивают в 20–30 Мв.

Периплазматическое пространство составляет около 10 нм, объем зависит от условий среды. Периплазма содержит муреиновый слой (саккулу) и раствор белков и олигосахаридов. Толщина муреинового слоя
1,6–3 нм, что соответствует одному-трем слоям муреина. Белки периплазмы двух типов. Встречаются гидролитические ферменты и транспортные белки. Возможно, что транспортные белки периплазмы ассоциированы с белками ЦПМ, которые обуславливают транспорт субстратов. Олигосахариды играют решающую роль в осморегуляции клетки.

У некоторых видов грациликутных на внешней мембране имеются белковые молекулы, образующие сетчатую структуру, несущие дополнительные зашитные функции.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)