|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Абсолютные и относительные показатели изменения структурыРазвитие статистической совокупности проявляется не только в количественном росте или уменьшении элементов системы, но также и в изменении ее структуры. Структура – это строение совокупности, состоящее из отдельных элементов и связей между ними. Например, экспорт страны (совокупность) состоит из различных видов товаров (элементов), стоимость которых различается по видам и по странам. Кроме того, происходит постоянное изменение структуры экспорта в динамике. Соответственно возникает задача изучения структуры совокупностей и их динамики, для чего разработаны специальные методы, которые будут рассмотрены далее. В теме 2 был рассмотрен индекс структуры, рассчитываемый по формуле (6), который характеризует долю отдельных элементов в итоге абсолютного признака совокупности. В теме 3 рассмотрена система показателей и методика анализа распределения совокупности по значениям какого-либо отдельного признака (вариационный ряд распределения). Здесь излагаются показатели, характеризующие изменение структуры в целом, т.е. «структурный сдвиг» [27]. Практическое применение этих показателей рассмотрим на двух примерах, представленных в таблицах 19 и 20 (первые 4 столбца, выделенные полужирным шрифтом, – исходные данные, а остальные – вспомогательные расчеты). Таблица 19. Распределение населения России по величине среднедушевых денежных доходов (СДД)
Таблица 20. Распределение численности безработных России по уровню образования в 2006 г.
Обобщающим абсолютным показателем изменения структуры может служить сумма модулей абсолютных изменений долей, определяемая по формуле (50): , (50) где d 1 j – доля j-ой группы элементов в отчетном периоде; d 0 j – доля j-ой группы элементов в базисном периоде. По данным таблицы 19 в 5-м столбце произведен расчет по формуле (50): =0,212, то есть суммарное изменение долей в распределении россиян по доходам составило 21,2%. Аналогично по той же формуле по данным таблицы 20: =0,276, то есть различие структуры безработных среди женщин и мужчин по уровню образованию составляет 27,6%. Расчет среднего абсолютного изменения, приходящегося на одну долю (группу, элемент совокупности) не дает никакой дополнительной информации. Зато можно определить, насколько сильно произошедшее изменение структуры в сравнении с предельно возможной величиной суммы модулей, которая равна 2. Для этого используется показатель степени интенсивности абсолютного сдвига (или индекс Лузмора-Хэнби), который определяется по формуле (51): . (51) По данным таблицы 19 по формуле (51): =0,106, то есть интенсивность изменения долей в распределении россиян по доходам составила 10,6% от максимально возможного. Аналогично по той же формуле по данным таблицы 20: =0,138, то есть различие структуры безработных среди женщин и мужчин по уровню образованию составляет 13,8% от максимально возможного. Обобщенная оценка степени структуризации явления в целом обычно выполняется по формуле уровня концентрации (или коэффициент Герфиндаля), который более чувствителен к изменению долей групп с наибольшим удельным весом в итоге, определяемый по формуле (52): (52) где – доля -го объекта в общем итоге изучаемого показателя; k – количество объектов. По данным таблицы 19 в 6-м и 7-м столбцах произведен расчет коэффициента Герфиндаля по формуле (52): H 2005=0,142 и H 2006=0,1687, то есть уровень концентрации в распределении россиян по доходам увеличился в 2006 году по сравнению с 2005 годом. Аналогично по той же формуле по данным таблицы 20: H муж=0,2455 и H жен=0,2177, то есть уровень концентрации в распределении безработных по уровню образованию среди мужчин выше, чем среди женщин (влияние уровня образования на статус безработного среди мужчин выше, чем среди женщин). Обратная индексу Герфиндаля величина – это эффективное число групп в структуре, которое показывает количество групп без учета групп, имеющих ничтожно малые доли, определяется по формуле (53): E = 1 /H. (53) По данным таблицы 19 эффективное число групп по формуле (53): E 2005=1/0,142=7,0 и E 2006=5,9, то есть эффективное число групп в распределении россиян по доходам уменьшилось с 7 в 2005 году до 6 в 2005 году, что свидетельствует о необходимости пересмотра интервалов распределения россиян по доходам в будущем году. Аналогично по той же формуле по данным таблицы 20: E муж=1/0,2455=4,07 и E жен=1/0,2177=4,59, то эффективное число групп в распределении безработных по уровню образованию среди мужчин выше и среди женщин – 4 у мужчин и 5 у женщин. Еще один вариант оценки степени структуризации явления в целом – индекс Грофмана (54), который представляет собой сумму модулей абсолютных изменений долей, приходящихся на одну эффективную группу: . (54) По данным таблицы 19 в по формуле (54): =0,212*0,142=0,030, то есть изменение долей, приходящихся на одну эффективную группу в распределении россиян по доходам незначительно (3,0%). Аналогично по той же формуле по данным таблицы 20: =0,2455*0,276=0,068, то есть различие структуры в расчете на одну эффектиную группу среди безработных женщин и мужчин по уровню образованию слабое (6,8%). Для оценки изменений двух наибольших долей (доминантные доли) применяется индекс Липхарта (55): . (55) где d 1 m и d 0 m – доля m -ой группы элементов в отчетном периоде и базисном периодах; m – максимальная доля в совокупности. По данным таблицы 19 по формуле (55): =0,5*(0,083+0,023)=0,053, то есть среднее изменение долей в двух доминантных группах распределения россиян по доходам составило 5,3%. Аналогично по той же формуле по данным таблицы 20: =0,5*(0,060+0,051)=0,056, то есть различие структуры в двух доминантных группах среди безработных женщин и мужчин по уровню образованию составляет 5,6%. Рассмотренные показатели основаны на средней арифметической в различных вариантах, и из-за их линейности по отклонениям они одинаково учитывают большие и малые отклонения. Квадратические индексы позволяют сравнивать различные структуры, неразличимые с точки зрения суммы изменений. Квадратический индекс структурных сдвигов Казинца (56): . (56) По данным таблицы 19 по формуле (56): = =0,035, то есть среднее измененение долей в группе в распределении россиян по доходам составило 3,5% (незначительно). Аналогично по той же формуле по данным таблицы 20: = =0,049, то есть различие в группах в структуре безработных среди женщин и мужчин по уровню образованию составляет 4,9% (несущественно). Аналогичен индексу Казинца индекс наименьших квдратов (или индекс Галлахера), при расчете которого, в отличие от формулы (51), малые разности долей слабее влияют на индекс, чем большие, определяется по формуле (57)[28]: . (57) По данным таблицы 19 по формуле (57): = =0,070, то есть интенсивность изменения долей в распределении россиян по доходам составила 7,0%. Аналогично по той же формуле по данным таблицы 20: = =0,092, то есть различие структуры безработных среди женщин и мужчин по уровню образованию составляет 9,2%. Незначительную модификацию индекса наименьших квадратов представляет индекс Монро (58): . (58) По данным таблицы 19 по формуле (58): = =0,093, то есть интенсивность изменения долей в распределении россиян по доходам по формуле Монро составила 9,3%. Аналогично по той же формуле по данным таблицы 20: = =0,117, то есть различие структуры безработных среди женщин и мужчин по уровню образованию по формуле Монро составляет 11,7%. Интегральный коэффициент структурных сдвигов Гатева (59), который различает структуры с равными суммами квадратов отклонений (принимает более высокие значения, когда группы имеют примерно одинаковые доли): . (59) По данным таблицы 19 по формуле (59): = =0,179, то есть интенсивность изменения долей в распределении россиян по доходам по методике Гатева составила 17,9% (незначительно). Аналогично по той же формуле по данным таблицы 20: = =0,192, то есть различие структуры безработных среди женщин и мужчин по уровню образованию по методике Гатева составляет 19,2% (незначительно). Индекс Рябцева, отличающийся от (59) только знаменателем, принимает обычно более низкие значения, рассчитывается по формуле (60): . (60) По данным таблицы 19 по формуле (60): = =0,127, то есть интенсивность изменения долей в распределении россиян по доходам по методике Рябцева составила 12,7% (незначительно). Аналогично по той же формуле по данным таблицы 20: = =0,137, то есть различие структуры безработных среди женщин и мужчин по уровню образованию по методике Рябцева составляет 13,7% (достаточно значительно). Индекс структурных различий Салаи (61), особенноситью которого является то, что чем больше доля j -ой группы, тем большее значение будет принимать 2, что ведет к уменьшению вклада j -ой группы в общей сумме, тем самым увеличивая значимость изменения долей малых групп: (61) По данным таблицы 19 по формуле (61): = =0,154, то есть средняя интенсивность изменения долей в распределении россиян по доходам по методике Салаи составила 15,4%. Аналогично по той же формуле по данным таблицы 20: = =0,148, то есть среднее различие долей в группах безработных среди женщин и мужчин по уровню образованию по методике Салаи составляет 14,8%. Для оценки структуры распределения доходов применяются специфические индексы: индекс Джини, индекс Аткинсона, индекс обобщенной энтропии, которые будут рассмотрены в курсе социально-экономической статистики в теме «Статистика уровня жизни». Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |