|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Проверка соответствия ряда распределения нормальномуПод теоретической кривой распределения понимается графическое изображение ряда в виде непрерывной линии изменения частот в вариационном ряду, функционально связанного с изменением вариантов, другими словами, теоретическое распределение может быть выражено аналитически – формулой, которая связывает частоты и соответствующие значения признака. Такие алгебраические формулы носят название законов распределения. Большое познавательное значение имеет сопоставление фактических кривых распределения с теоретическими. Как уже неоднократно отмечалось, часто пользуются типом распределения, которое называется нормальным. Формула функции плотности нормального распределения имеет следующий вид (41):
где X – значение изучаемого признака;
σ – среднее квадратическое отклонение;
π = 3,1415 – постоянное число (отношение длины окружности к ее диаметру); e = 2,7182 – основание натурального логарифма. Следовательно, кривая нормального распределения может быть построена по двум параметрам – средней арифметической и среднему квадратическому отклонению. Поэтому важно выяснить, как эти параметры влияют на вид нормальной кривой. Если
![]()
![]() ![]() ![]() ![]()
![]()
Рис. 8. Влияние величины σ на кривую нормального распределения Если σ остается неизменной, а
![]() ![]() ![]() ![]()
Рис. 9. Влияние величины Итак, выделим особенности кривой нормального распределения: 1) кривая симметрична и имеет максимум в точке, соответствующей значению 2) кривая асимптотически приближается к оси абсцисс, продолжаясь в обе стороны до бесконечности (чем больше отдельные значения X отклоняются от 3) кривая имеет две точки перегиба на расстоянии ± σ от 4) коэффициенты асимметрии и эксцесса равны нулю. Гипотезы о распределениях заключаются в том, что выдвигается предположение о том, что распределение в изучаемой совокупности подчиняется какому-то определенному закону. Проверка гипотезы состоит в том, чтобы на основании сравнения фактических (эмпирических) частот с предполагаемыми (теоретическими) частотами сделать вывод о соответствии фактического распределения гипотетическому распределению. Под гипотетическим распределением необязательно понимается нормальное распределение. Может быть выдвинута гипотеза о логнормальном, биномиальном распределениях, распределении Пуассона и пр.[21] Причина частого обращения к нормальному распределению состоит в том, что, как уже было замечено ранее, в этом типе распределения выражается закономерность, возникающая при взаимодействии множества случайных причин, когда ни одна из не имеет преобладающего влияния. В нашем примере про ВО близость значений средней арифметической величины (60,82), медианы (59,30) и моды (58,96) указывает на вероятное соответствие изучаемого распределения нормальному закону. Проверка гипотезы о соответствии теоретическому распределению предполагает расчет теоретических частот этого распределения. Для нормального распределения порядок расчета этих частот следующий: 1) по эмпирическим данным рассчитывают среднюю арифметическую ряда 2) находят нормированное (выраженное в σ) отклонение каждого эмпирического значения от средней арифметической:
3) по формуле (41) или с помощью таблиц интеграла вероятностей Лапласа находят значение φ (t)[22]; 4) вычисляют теоретические частоты m по формуле:
где N – объем совокупности, hi – длина (размах) i -го интервала. Определим теоретические частоты нормального распределения в нашем примере про ВО по данным табл. 12, для чего построим вспомогательную таблицу 14. Средняя арифметическая величина и среднее квадратическое отклонение нами уже найдены ранее ( Таблица 14. Расчет теоретических частот нормального распределения
Сравним на графике эмпирические f (ВО по таможенным постам) и теоретические m (нормальное распределение) частоты, полученные на основе данных табл. 14 (рис. 10). Близость этих частот очевидна[23], но объективная оценка их соответствия может быть получена только с помощью критериев согласия. Рис. 10. Распределение ВО по таможенным постам (эмпирическое) и нормальное Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда – существенными (неслучайными). Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой гипотезы о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения. Существует ряд критериев согласия, но чаще всего применяют критерии Пирсона χ2, Колмогорова и Романовского. Критерий согласия Пирсона χ2 (хи-квадрат) – один из основных критериев согласия, рассчитываемый по формуле (44):
где k – число интервалов; fi – эмпирическая частота i -го интервала; mi – теоретическая частота. Для распределения χ2 составлены таблицы, где указано критическое значение критерия согласия χ2 для выбранного уровня значимости α и данного числа степеней свободы ν (см. Приложение 3). Уровень значимости α – это вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность (P) того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости: 1) α = 0,10, тогда P = 0,90; 2) α = 0,05, тогда P = 0,95 [24]; 3) α = 0,01, тогда P = 0,99. Число степеней свободы ν определяется по формуле: ν = k – z – 1,(45) где k – число интервалов; z – число параметров, задающих теоретический закон распределения. Для нормального распределения z = 2, так как нормальное распределение зависит от двух параметров – средней арифметической ( Для оценки существенности расхождений расчетное значение χ2 сравнивают с табличным χ2 табл. Расчетное значения критерия должно быть меньше табличного, т.е. χ2<χ2 табл, в противном случае расхождения между теоретическим и эмпирическим распределением не случайны, а теоретическое распределение не может служить моделью для изучаемого эмпирического распределения. Использование критерия χ2 рекомендуется для достаточно больших совокупностей (N >50), при этом частота каждой группы не должна быть менее 5, в противном случае повышается вероятность получения ошибочных выводов. В нашем примере про ВО для расчета критерия χ2 построим вспомогательную таблицу 15. Таблица 15. Вспомогательные расчеты критериев согласия
Теперь по формуле (44): χ2 =4,744, что меньше табличного (Приложение 3) значения χ2 табл=7,8147 при уровне значимости α = 0,05 и числе степеней свободы ν= 6–2–1=3, значит с вероятностью 0,95 можно говорить, что в основе эмпирического распределения величины ВО по таможенным постам лежит закон нормального распределения, т.е. выдвинутая гипотеза не отвергается, а расхождения объясняются случайными факторами. Критерий Романовского КР основан на использовании критерия Пирсона χ 2, т.е. уже найденных значений χ 2 и числа степеней свободы ν, рассчитывается по формуле (46):
Он используется в том случае, когда отсутствует таблица значений χ 2. Если КР < 3, то расхождения между теоретическим и эмпирическим распределением случайны, если КР > 3, то не случайны, и теоретическое распределение не может служить моделью для изучаемого эмпирического распределения. В нашем примере про ВО по формуле (46): Критерий Колмогорова λ основан на определении максимального расхождения между накопленными частотами эмпирического и теоретического распределений (D), рассчитывается по формуле (47) [25]:
Рассчитав значение λ, по таблице P (λ) (см. Приложение 6) определяют вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Вероятность P (λ) может изменяться от 0 до 1. При P (λ) = 1 (т.е. при λ < 0,3) происходит полное совпадение частот, при P (λ) = 0 – полное расхождение. В нашем примере про ВО в последних трех столбцах таблицы 15 приведены расчеты накопленных частот и разностей между ними, откуда видно, что в 3-ей группе наблюдается максимальное расхождение (разность) D = 3,664. Тогда по формуле (47): Итак, подтвердив правильность выдвинутой гипотезы с помощью известных критериев согласия, можно использовать результаты распределения для практической деятельности. Какое же практическое значение может иметь произведенная проверка гипотезы? Во-первых, соответствие нормальному закону позволяет прогнозировать, какое число таможенных постов (или их доля) попадет в тот или иной интервал значений величины ВО. Во-вторых, нормальное распределение возникает при действии на вариацию изучаемого показателя множества независимых факторов. Из чего следует, что нельзя существенно снизить вариацию величины ВО, воздействуя только на один-два управляемых фактора, скажем число работников таможенного поста или степень технической оснащенности. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.) |