|
|||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Расчет моментов распределения и показателей его формыДля дальнейшего изучения характера вариации используются средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины. Эти показатели называются центральные моменты распределения порядка, соответствующего степени, в которую возводятся отклонения (табл. 13) или просто моментов (нецентральные моменты в таможенной статистике практически не используются). Таблица 13. Центральные моменты
Величина третьего момента μ3 зависит, как и его знак, от преобладания положительных кубов отклонений над отрицательными кубами либо наоборот. При нормальном и любом другом строго симметричном распределении сумма положительных кубов строго равна сумме отрицательных кубов, поэтому на основе третьего момента строится показатель, характеризующий степень асимметричности распределения – коэффициент асимметрии (36): . (36) В нашем примере про ВО показатель асимметрии по формуле (36) составил (расчет числителя произведен в 9-м столбце табл. 12): = 0,423 > 0, т.е. асимметрия значительна. Английский статистик К.Пирсон на основе разности между средней арифметической величиной и модой предложил другой показатель асимметрии (37): . (37) В нашем примере по данным табл. 12 показатель асимметрии по формуле (37) составил: = 0,09. Показатель асимметрии Пирсона (37) зависит от степени асимметричности в средней части ряда распределения, а показатель асимметрии (36) – от крайних значений признака. Таким образом, в нашем примере про ВО в средней части распределения наблюдается меньшая асимметрия, чем по краям, что видно и по графику (рис. 5). Распределения с сильной правосторонней и левосторонней асимметрией показаны на рис. 6.
Рис. 6. Асимметрия распределения С помощью момента четвертого порядка характеризуется еще более сложное свойство рядов распределения – эксцесс (от англ. «излишество»). Показатель эксцесса рассчитывается по формуле (38): . (38) Чаще всего эксцесс интерпретируется как «крутизна» распределения, что не совсем верно. График распределения может выглядеть сколь угодно крутым в зависимости от силы вариации признака: чем слабее вариация, тем круче кривая распределения при данном масштабе. Не говоря уже о том, что, изменяя масштабы по осям абсцисс и ординат, любое распределение можно искусственно сделать «крутым» и «пологим». Чтобы показать, в чем состоит эксцесс распределения, и правильно его интерпретировать, нужно сравнить ряды с одинаковой силой вариации (одной и той же величиной σ) и разными показателями эксцесса. Чтобы не смешать эксцесс с асимметрией, все сравниваемые ряды должны быть симметричными. Такое сравнение изображено на рис. 7.
Рис. 7. Эксцесс распределения Наличие положительного эксцесса означает наличие слабоварьирующего «ядра» и сильно рассеянного вокруг него окружения в изучаемой совокупности. Отрицательный эксцесс означает отсутствие такого «ядра». В нашем примере по формуле (38) эксцесс составил (расчет числителя произведен в 10-м столбце табл. 12): , т.е. величина ВО по таможенным постам варьирует сильнее, чем при нормальном распределении. По значениям показателей асимметрии и эксцесса распределения можно судить о близости распределения к нормальному: показатели асимметрии и эксцесса не должны превышать своих двукратных средних квадратических отклонений, т.е. и . Эти средние квадратические отклонения вычисляются по формулам (39) и (40): ; (39) . (40) В нашем примере по формулам (39) и (40): ; . Так как показатели асимметрии и эксцесса не превышают своих двукратных средних квадратических отклонений (As = |0,423| < 0,4*2; Ex = |–0,41| < 0,78*2), можно говорить о сходстве анализируемого распределения с нормальным. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |