|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Индексы средних величинПри изучении качественных показателей часто приходится рассматривать изменение во времени (или пространстве) средней величины индексируемого показателя для определенной однородной совкупности. Например, в статистических сборниках публикуются данные о динамике средних цен, средней номинальной заработной плате в отдельных отраслях и т.д. Средняя величина является обощающей характеристикой качественного показателя и складывается как под влиянием значений показателя у индивидуальных элементов (единиц), из которых состоит объект, так и под влиянием соотношения их весов («структуры» объекта). Если любой качественный индексируемый показатель обозначить через x, а его веса – через f, то динамику среднего показателя можно отразить как за счет изменения обоих факторов (x и f), так и за счет каждого фактора отдельно. В результате получим 3 различных индекса: индекс переменного состава, индекс фиксированного состава и индекс структурных сдвигов. Индекс переменного состава отражает динамику среднего показателя (для однородной совокупности) за счет изменения индексируемой величины x у отдельных элементов (частей целого) и за счет изменения весов f, по которым взвешиваются отдельные значения x. Любой индекс переменного состава – это отношение двух средних величин для однородной совокупности (за два периода или по двум территориям) (202): . (202) Свое название этот индекс получил потому, что он характеризует динамику средних величин не только за счет изменения индексируемой величины у отдельных элементов (частей целого), но и за счет изменения удельного веса этих частей в общей совокупности, т.е. изменения состава совокупности. Индекс фиксированного состава отражает динамику среднего показателя лишь за счет изменения индексируемой величины x, при фиксировании весов. Если фиксировать веса на уровне отчетного периода f 1, то получим формулу самую распространенную[57] формулу индекса фиксированного состава (203): . (203) Другими словами, индекс фиксированного состава исключает влияние структуры (состава) совокупности на динамику средних величин, рассчитанных для двух периодов по одной и той же фиксированной структуре весов (на уровне отчетного или базисного периода). По аналогии можно показать динамику среднего показателя лишь за счет изменения только весов f при фиксировании индексируемой величины x. Такой индекс условно назван индексом структурных сдвигов, который определеятся при фиксировании индексируемой величины на уровне базисного периода x 0 по самой распространенной[58] формуле (204): , (204) Формулы (203) – (204) обычно применяются в тех случаях, когда влияние изменения структуры совокупности на динамику среднего показателя сильнее (1-ый фактор) влияния изменения только самой индексируемой величины (2-ой фактор)[59]. Если от абсолютных весов f перейти к относительным весам (долям) по формуле (6), то формулы (202) – (204) примут следующий вид: ; (205) ; (206) . (207) В формулах (202) – (207) при анализе конкретных качественных индексируемых показателей (например, цены товара, себестоимости, производительности труда, урожайности и т.п.) вместо обозначений x и f должны использоваться другие общепринятые обозначения. Например, при анализе такого качественного показателя как цена формулы (202) – (207) примут следующий вид: ; (208) ; (209) . (210) Нетрудно заметить, что индекс переменного состава есть произведение индекса фиксированного состава на индекс структурных сдвигов: . (211) Из формулы (211) видно, что, например, индекс структурных сдвигов можно рассчитать путем деления индекса переменного состава на индекс фиксированного состава. В нашем примере про дедушку определяем индекс переменного состава по формуле (208): , то есть средняя цена яблок сегодня составляет 99,06% от вчерашней, то есть средняя цена снизилась с 21,2 руб. до 21,0 руб. за кг, что составило 0,94%. Чтобы исключить влияние изменения структуры продаж яблок на динамику средней цены, рассчитаем индекс цены фиксированного состава по формуле (209)[60]: . Влияние изменения структуры продаж (доля продаж яблок сорта «антоновка» увеличилась, а сорта «белый налив» – уменьшилась) на динамику средней цены яблок отразим с помощью индекса структурных сдвигов, расчитав его по формуле (210): =0,9838. Проверку правильности расчетов выполним по формуле (211): 1,0069*0,9838 = 0,9906. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |