|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Если отверст. открыв. четное число зон Френеля то в т. P наблюд. min, если нечетное – то maxПусть на пути сферич. фронта свет. волны распол. круглый непрозрачный диск, к-й закрыв. 1-е m зон Френеля. A= Am+1-Am+2+Am+3-Am+4+…=Am+1/2+(Am+1/2-Am+2+ Am+3/2)+(Am+3/2-…=Am+1/2 Видно что в т.P всегда наблюд. max. Расчитаем радиус зон Френеля. rm2=a2-(a-h)2=(b-ml/2)2-(b+h)2, пренебрегая величинами порядка l2 окончательно получаем rm=Ö(abml/(a+b))- сферический фронт свет. волны rm=lima®¥Ö(abml/(a+b))=Ö(bml) т.е. rm=Ö(bml)-плоский фронт свет. волны. 2. Тепловое равновесное излучение. Закон Кирхгофа. Т. и. это излучение эл–маг вол нагретым вещ. Т. и. происходит за счет внут. энергии нагретого тела нах. в связи с термодин. средой. То это наз. равновесным излучением. В теории Т.и. вводится понятие абсол. черного тела. Аб. ч. тело–это тело к–е полностью поглощ. падающий на него излучение (не отраж.). Моделью а.ч. тела может служить маленькое отверстие в полой сфере. Для описания Т.и. вводится след. величины Rэ–энерг. светимость (излучательность), эта энергия излуч. с ед поверх. нагретого тела за ед времени на всех длинах волн (мощность). A(l,T)–поглощ. способ. тела, A(l,T)=Wпогл(l,T)/ Wпад(l,T)–отнош. пад. энергии к поглощ. (на длине волны l при темп. T). E(l,T)–спектральн. плотность излучат. способности–эта энерг. излучаем. с ед. поверхн. тела за ед времени на длине волны l. Закон Киргофа. Для всех тел справедливо соотнош. E(l,T)/A(l,T)=const=e(l,T)–спектраль. плотность излучат. способность а.ч. тела. Отсюда видно что а.ч. тело излучает больше любого др. 3. Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля. Дифракция электронов. В 1924г Луи де-Бройль высказал гипотезу, согласно которой дуализм (двойственность) св-в присущи не только оптическим явлениям, но и к материи вообще. В частности с потоком электронов связан волновой процесс, который влияет на поведение электрона как частицу, заряд и масса которой локализованы в малом объеме пространства так, что ведет себя как точечный заряд. Д-Бройль показал, как можно определить длинну электронной волны по аналогии с длинной волны фотона. Pф=m(индекс ф)c=hνc/c (c.2)=hν/c=h/λ; λ(инд.c)=h/P(индекс е)= =h/m(инд. с) v(инд.с) (1). Длина волны, определяемая (1) называется дебройлевой длиной волны. Д-Бройль попробовал объяснить 1-й постулат Бора – постулат квантования. Согласно д-Бройлю, стационарными являются такие орбиты электрона, у которых вдоль периметра укладывается целое число волн д-Бройля. Т.е. вдоль орбиты устанавливается стоячая волна. 2πr = nλ(индекс с), 2πr = nh/mv; mvr = nh/2π=nh(в). Джемер и Дэвисон впервые обнаружили дифракцию электронов при рассеянии их на монохроматические никеля. Электроны, ускоренные разностью потенциалов U, вылетали из эл. пушки в виде узкого пучка, и фокусировались на клисталлической пластинке. Рассеяные электроны улавливались ловушкой цилиндра Фарадея, соединенного с чувствительным гальванометром. Электроны отдавали свой заряд ловушке и устанавливалась зависимость J от √U. Сила тока J является мерой отраженных от пластины электронов, а √U – мера их скорости. mv 2/2=eU; √U~v. Т.о. от кристалла отражаются лишь электроны определенных скоростей. Кристалл представляет собо пространственную дифракционную решетку, в которой источники вторичных волн, т.е. частицы в узлах кристаллической решетки, находятся на строго определенных расстояниях вдоль координатных осей. При прохождении через кристалл электро-магнитного излучения, частицы в узлах кристаллической решетки испускают вторичные волны, которые, налагаясь, образуют максимум и минимум дифракции. То, что от кристалла отражались лишь электроны определенных скоростей означало, что на кристалл падает излучение, представляющее собой волновой процесс, в его избирательное отражение есть результат дифракции. Билет №5 1. Дифракция Фраунгофера на щели. Получите выражение, описывающее распределение интенсивности света на экране. Диф. Ф.-диф. в параллельн. лучах. Диф. Френеля-диф. в не параллельн. лучах (в част. сфер.)
1) j=0 2) bsinj=l/2, 1-зона Френеля, j=arcsinl/(2b) => d=2A0/p, 3) bsinj=2l/2, 2-зоны Френеля, j=arcsinl/b, 4) bsinj=3l/2, 3-зоны Френеля, j=arcsin3l/(2b) => d=3A0/(2p), Метод зон Френеля яв. приближенным методом, точнее расспред. интенс. м. получить воспользовавшись принципом Гюгенса-Френеля: dE=B(j)a0/2cos(wt-kr+a), разобьем поверхн. щели на ряд узких полосок шириной dy.
dA=cdy, где c нект. коэф. пропорц. к-й м. найти из условия что при j=0 A=A0. т.е. A=∫0bdA=∫0bcdy=cb => c=A0/b, dA=A0dy/b, Результирующую амплитуду колебаний Ej=∫0bdAcos(wt-kD)dy, Окончательно получаем Ej=∫0bA0/bcos(wt-2p/lysinj)dy=A0sin[pb/l(pb/lsinj)]/[pb/l(pb/lsinj)]cos(wt-pb/lsinj) => Амплитуда кол-й =A0sin(pb/lsinj)/(pb/lsinj), I=I0sin2(pb/lsinj)/(pb/lsinj).
Аб. ч. тело–это тело к–е полностью поглощ. падающий на него излучение (не отраж.). Моделью а.ч. тела может служить маленькое отверстие в полой сфере. Анализ получ. эксперимент. закономерн. позволили сформул. законы излуч. Стефана–Больцмана Rэ=sT4, пост. Ст–Б. s=5.71*10–8, если тело не яв–ся А.ч. то Rэ=ksT4, где k–нек–ий коэф. наз. степенью нечерноты 0<=k<=1 Закон смещения Вина lmax=b/T, b–1–я пост. Вина b=2.898*10–3, lmax–длина волны на к–ю приход. max излучательной способн. А.ч.тела. 2–й закон Вина e0(lmax,T)=b1T5, b1–2–я пост. Вина b=1.29*10–5,
Формула Р.–Д. согласовывается с экспериментальной кривой только в области больших длин волн при l®0 => e(l,T)®¥. Расхождение ф. Р.–Д. с экспериментальной кривой в области малых длин волн было названо “ультрафиолетовой катастрофой”. Классич. физика оказалась не способна объяснить излучен. нагрет. тел. Получить теорет. зависимость e(l,T) удалось Максу Планку путем отказа от теории о непрер. излучен. энергии нагрет. тел. 3. Акустические и оптические колебания кристаллической решетки. Понятие о фононах. Рассм-м цепочку (одномерную), состоящую из разнородных атомов.
Кол-я 1 типа наз-ся акуст кол-ями кр реш-ки. При этом соседние атомы кр реш-ки колеб-ся практически в 1й фазе. Акуст кол-я определяют тепловые св-ва кристалла (теплопроводность, теплоемкость и др.). Кол-я 2 типа наз-ся оптическими. При таких кол-ях соседние атомы кол-ся практически в противофазе. Такие кол-я опред-ют процессы взаимодействия тв тела со светом. Дисперсионные кривые для этих кол-й имеют существенные различия. Каждое нормальное колебание (коллективное дв-е в пространственно-упорядоченной системе; вследствии сильного взаимодействия м/у частицами в ТВ теле колебание возник Согласно правилам отбора Δv=+-1, т е переходы могут осущ-ся только м/у соседними энерг уровнями. Приэтом испуск-ся или поглощ-ся квант энергии = ħ w = Eф. Этот квант энергии тепловых колебаний реш-ки наз-ся фононом. Фонон может рассм-ть как своеобразную квази-частицу, приписывая ему энергию, массу и импульс. В отличии от обычных частиц квази-частица не может возникнуть в вакууме, для ее сущ-ия необх-мо некоторая квантовая среда, в данном случае это кр реш-ка. Т о тв тела можно рассм-ть, как нек-й объем заполненный фононным газом и в нек-х случаях применятьк нему з-ны идеал газа.
Билет №6 1. Интерференция света в тонких линзах. Распространенным примером интерференции света в природе является интерференция в тонких пленках: радужная окраска Из ур-я Максвелла и условий наклад. На эл.-маг. Поля на границе 2-х диэлектриков => что при отражен. эл.-маг. волны (света) от оптически более плотной среды происходит поворот фазы кол-й на 180°, след-но фаза кол-й в т.А на рис. меняется при отражении на 180°, это можно учесть введя l/2, l- длина монохр. света попадающ. на пленку. Значит полная оптическая разность хода м/у лучами 1 и 2 будет l/2. Условия max можно получить при равенстве n четному числу волн т.е. max: 2d√(n2sin2i)=(2m+1)l/2, min: 2d√(n2sin2i)=2ml/2 (в отраженном свете). В проходящем свете условия max и min меняется местами. Если толщина пластинки постоянна, то интерференционная картина имеет вид чередующихся темных и светлых полос, каждая из которых соответствует определенному углу i - полосы равного наклона. Если пластинка переменной, толщины, то места ослабления и усиления света будут соответствовать местам определенной толщины пластины. Интерференционные полосы в этом случае называют полосами равной толщины. 2. Внешний фотоэффект и его законы. Внешним фотоэффектом называется испускание электронов с поверхности металла под действием падающего света. Экспериментально было установлено, что внешний фотоэффект подчиняется следующим законам: 1.Максимальная скорость вылетающих с поверхности металла электронов не зависит от интенсивности падающего света, а зависит от его частоты. 2.Существует предельная длина волны характерного для каждого вещества, выше которого фотоэффект не наблюдается (простая граница Фотоэффекта). Эти закономерности, наблюдаемые экспериментально, нельзя было объяснить, считая свет волной, в фотоэффекте действует корпускулярная природа света. 3.Взаимодействие нуклонов. Свойства и природа ядерных сил. Громадная энергия связи нуклонов в ядре указывает на очень сильное взаимодействие между ними. Нейтроны и протоны в ядре удерживаются мощными ядерными силами притяжения, которые подавляют расталкивающее действие кулоновских сил между протонами Свойства ядерных сил: 1. Ядерные силы- это короткодействующие силы. Радиус их действия порядка 10-13 см. 3. Не центр-е. Ядерные взаимодействия между протонами (р-р),нейтронами (п-п), протоном и нейтроном (р-п) одинаковы, поэтому ядерные силу обладают зарядовой независимостью. Отсюда следует, что природа этих сил отличается от природы электрических и гравитационных сил. Ядерные силы относятся к силам насыщения. Это означает, что каждый нуклон взаимодействует только с ограниченным числом ближайших к нему нуклонов. Такое заключений следует из того факта, что Есв~ А Если бы каждый нуклон взаимодействовал с остальными, то Есв ~А(А-1)~А2..
Билет №7 1. Интерференция света в тонких линзах. Кольца Ньютона.
Из ур-я Максвелла и условий наклад. На эл.-маг. Поля на границе 2-х диэлектриков => что при отражен. эл.-маг. волны (света) от оптически более плотной среды происходит поворот фазы кол-й на 180°, след-но фаза кол-й в т.А на рис. меняется при отражении на 180°, это можно учесть введя l/2, l- длина монохр. света попадающ. на пленку. Значит полная оптическая разность хода м/у лучами 1 и 2 будет l/2. Условия max можно получить при равенстве n четному числу волн т.е. max: 2d√(n2sin2i)=(2m+1)l/2, min: 2d√(n2sin2i)=2ml/2 (в отраженном свете). В проходящем свете условия max и min меняется местами. Если толщина пластинки постоянна, то интерференционная картина имеет вид чередующихся темных и светлых полос, каждая из которых соответствует определенному углу i - полосы равного наклона. Если пластинка переменной, толщины, то места ослабления и усиления света будут соответствовать местам определенной толщины пластины. Интерференционные полосы в этом случае называют полосами равной толщины.
Находим радиус К-го' кольца rk=√(kλR)Измеряяrk, и зная R, можно найти длину волна света. 2. Поглощение света. Закон Ламберта-Бера.
3. Соотношение неопределенностей Гейзенберга. Во всех макроскопических системах электрон ведет себя как частица, локализованная в малом объеме, обладающая определенной координатой и скоростью. При движении электрона в атоме проявляются его волновые свойства в большей степени, как и во всех микроскопических частицах, но волна не локализована в пространстве, а безгранична. Пусть электроны движутся в направлении ОА со скоростью Vx и встречают узкую щель ВС с шириной а. DE – экран, на который будут попадать электроны. Т.к. электроны обладают волновыми свойствами, то при прохождении через узкую щель они дифрагируют, в результате чего электроны будут попадать не только в точки экрана DE, расположенные непосредственно за щелью, но распределяется по всему экрану. Представим, что электрон – классическая частица. Она характеризуется координатой и количеством движения. Можно охарактеризовать координату электрона в момент прохождения щели как координату щели. В таком определении координаты, однако, есть неточность, обусловленная шириной щели. Обозначим эту неопределенность через ∆x=a. После прохождения щели составляющая импульса Px≠0, т.к. вследствии дифракции изменяется скоростью. Составляющая импульса электрона не может быть определено точно, а лишь с некоторой погрешностью ∆Px≥Psinφ1=Pλ/a=hλ/λa=h/a; ∆Px*∆x≥h (1) – соотношение неопределенностей Гейзенберга. Билет №8 1. Двойное лучепреломление и его объяснение.
Кристаллы, обладающие двойным лучепреломлением, подразделяются на одноосные (исландский шпат, кварц и турмалин) и двуосные (слюда, гипс). У одноосных кристаллов один из преломленных лучей подчиняется обычному закону преломления, в частности он лежит в одной плоскости с падающим чучом и нормалью к преломляющей поверхности. Этот луч наз-ся обыкн-м о. Для другого луча – необыкн-ного е, отношение синусов угла падения и угла преломления не остается постоянным при изменении угла падения. У двуосных оба луча необ-е.
2. Спин электрона. Спиновое квантовое число. Экспериментальные доказательства существования спина. Был поставлен эксперимент, для которого брались атомы, у кот-х число электронов нечётно, и механические и магнитные моменты кот-х попарно взаимно компенсируются. Такими атомами явл-ся атомы элем-в 1-ой группы таблицы Менделеева. Важной особенностью элем-в этой группы явл-ся то, что элек-н находящиеся в основном состоянии имеет l=0, Мl =0 Рl =0. Брался источник атомов, поток кот-х пропускали ч\з магн. поле. Т.к. магнитный и механ-й моменты атомов были =0, то эти атомы не должны были отклоняться магнитным полем и на экране должно было наблюдаться 1 пятно. Эксперимент показал: атомы отклон-ся и дают 2 max на экране. Т.к. механ-й и магн-й моменты электрона в атоме обусловленые его движением вокруг ядра были равны 0, а атомы всё равно отклон-сь магн. полем, было предположено, что электрон в атоме обладает собственным механическим Мs и соответствующим ему магнитным Рs моментами, кот-е были названы механическим магнитным спиновым моментами. Спин электрона считается таким же фундаментальным свойством, как заряд и масса. Значение спинового механического момента м\б вычислено по формуле: Мs=ħ 3. Зонная структура собственных полупроводников. Собственная проводимость полупроводников и ее зависимость от температуры. Полупр-ки – в-ва, у к-х ширина запрещ-й зоны составляет величину порядка 1 эВ. При низких темп-х полупр-ки не проводят эл ток и яв-ся изолятором. Хим-ски чистые в-ва яв-ся собств полупр-ками. Рассм 4хвалентный полупр-к Ge (германий). Четыре связи с соседними атомами, образованы восемью эл-нами (по четыре от каждого атома). Каждый эл-н обр-ет связь с противоположно направ-ми спинами. При низк темп-ре все связи оказываются укомплектованными эл-нами и своб эл-нов в полупр-ке нет. При увел темп-ры за счет энергии хим-го дв-я происходит отрыв эл-нов от одной из связи. При этом на месте ушедшего эл-на остается не скомпенсированный полож заряд наз-й дыркой. Дырка локализована на какой-то одной связи в кристалле и своб переем-ся по кристаллу не может. Оторвавшийся же эл-н может своб-но перем-ся по кр-лу. Если приложить внешнее эл поле, то эл-н будет перем-ся против поля. Дырку же может занять эл-н из соседней связи. Путем таких перескоков дырка будет перем-ся по полю, а эл-н против поля. Дв-е дырки можно рассм-ть как дв-е полож заряж частиц. Когда своб эл-н занимает место дырки исчезает одновременно и своб эл-н и дырка. Такой процесс наз-ся рекомбинацией. Т о в хим-ски чистых полупр-ках появл-ся одновр-но своб эл-ны и дырка, При сообщении ему достаточной энергии он преодолевает запрещ-ю зону и переходит в зону проводимости. При этом в валентной зоне образ-ся дырка. Такой переход
Билет №9 1. Метод зон Френеля. Графический метод сложения амплитуд.
Обозначим ч/з A1 амплитуду кол-й в т-ки P даваемым всеми т-ми источниками нах. внутри 1-й зоны Френеля. Ясно что A1 > A2 > A3… Результат амплитуды кол-й в т.P даваемое всеми зонами Френеля будет A = A1 - A2+A3 - A4…, A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда кол-й = половине амплитуды кол-й даваемой 1-й зоной Френеля. Графический метод определения результирующей амплитуды.
2. Внешний фотоэффект и его законы. Уравнение Эйнштейна.
1.Максимальная скорость вылетающих с поверхности металла электронов не зависит от интенсивности падающего света, а зависит от его частоты. 2.Существует предельная длина волны характерного для каждого вещества, выше которого фотоэффект не наблюдается (простая граница Фотоэффекта).
Эйнштейн развил квантовую гипотезу Планка. Свет распространяется в виде отдельных порций (фотонов). Отсюда видно, что скорость электронов при фотоэффекте зависит только от частоты падающего света. hv=Aвых+mv2/2. Интенсивность света определяется числом фотонов падающих на катод. Следовательно, число фотоэлектронов определяется только интенсивностью падающего света и не зависит от его частоты. Для того чтобы придержат фототок необходимо подать на анод задерживающее напряжение. Его величину можно определить по формуле: mv2/2=eU,U – задерживающее напряжение на аноде. Поэтому, h v =Авых+eU. Работа Авых определяется типом материи из к–го сделан фотокатод. При уменьшении частоты падающего света энергия вылетевших электронов будет уменьшаться hvкр =Авых => λкр=hc/ Авых. Таким образом ур–е Эйнш. позволяет объяснить все экспер. набл. законом–ти. Ур–е Эйнш. построено на основе одно. приближения. Авых каж–го конкрет. эл–на не завис. от выхода др. эл–в с фотокатода. 3. Понятие о квантовой статистике Ферми-Дирака. Уровень Ферми. Любое тв тело состоит из огромного числа частиц. В таких коллективах проявл-ся особые статистич-е законы. Существуют 2 способа описания большого кол-ва частиц.
2) в статистическом методе опис-ся только вероятность того, что частица может иметь то или иное значение координаты и импульса => статист метод позволяет рассч-ть вер-сть наступления того или иного события. Квантовая статистика – это раздел физики рассм-й коллек-вы частиц подчиняющ-ся квант-м законам, а классич-я статистика – классич-м зак-м. Принципиальное отличие квант и класс статистики состоит в том, что в класс стат-ке меняются все величины непрерывным способом и => число возм-х сост-й для каждой частицы бесконечно большое. В квант стат-ке величины меняются дискретно и => число возм-х сост-й для каждой частицы конечно. Кроме этого на квант коллективы распространяется принцип неразличимости тождественных частиц.
Билет №10 1. Двойственная природа света. Суть волновой и квантовой теории света. Приведите примеры проявления волновых и квантовых свойств света. Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других - какпоток особых частиц, фотонов, что проявляется более отчетливо для очень коротких электромагнитных волн рентгеновское излучение, (Гамма- лучи). Поэтому часто под оптикой понимают учение о физических явлениях, связанных с распространением коротких электромагнитных волн. Волновое св-ва света проявляется: интерференции, дифракции, поляризации. Корпускулярное св-во: явление внешнего фотоэффекта.
где w-частота колебаний, k=2π/λ- волновое число, r-расстояние, отсчитываемые вдоль направления распространения. Отношение скорости световой волны в вакууме к скорости ее в среде называется абсолютный показателем преломления этой среды n: n=c/υ. С учетом формулы: υ=c/√(εμ) находим n=√(εμ). Т.к. для большинства прозрачных сред μ =1, то n=√ε формула связывает оптические свойства вещества с его электрическими свойствами. Значения n характеризуют оптическую плотность среды, которая тем больше, чем больше n. 2. Спин электрона. Спиновое квантовое число. Экспериментальное подтверждение существования спина у электрона. Был поставлен эксперимент, для которого брались атомы, у кот-х число электронов нечётно, и механические и магнитные моменты кот-х попарно взаимно компенсируются. Такими атомами явл-ся атомы элем-в 1-ой группы таблицы Менделеева. Важной особенностью элем-в этой группы явл-ся то, что элек-н находящиеся в основном состоянии имеет l=0, Мl =0 Рl =0. Брался источник атомов, поток кот-х пропускали ч\з магн. поле. Т.к. магнитный и механ-й моменты атомов были =0, то эти атомы не должны были отклоняться магнитным полем и на экране должно было наблюдаться 1 пятно. Эксперимент показал: атомы отклон-ся и дают 2 max на экране. Т.к. механ-й и магн-й моменты электрона в атоме обусловленые его движением вокруг ядра были равны 0, а атомы всё равно отклон-сь магн. полем, было предположено, что электрон в атоме обладает собственным механическим Мs и соответствующим ему магнитным Рs моментами, кот-е были названы механическим магнитным спиновым моментами. Спин электрона считается таким же фундаментальным свойством, как заряд и масса. Значение спинового механического момента м\б вычислено по формуле: Мs=ħ 3. Прохождение микрочастицы через потенциальный барьер. Туннельный эффект. Коэффициент прозрачности. Зададим потенциальную функцию И(х) в виде: И(х)=0 в 1-й и 3-й области, И(х)=И0 в области 2. Пусть частица движется в «+» направлении оси х из области 1 и на своем пути встречает прямоугольный потенциальный барьер ширины L и высоты Uo. 1)C точки зрения классической физики, если Uo<E (E – энергия микрочастицы), то частица беспрепятственно проходит над барьером. 2)Если Uo>E, то микрочастица отражается от барьера и летит обратно. В квантово-механическом случае при Uo<E час-ца также беспрепятственно проходит из области 1 в область 3. С точки зрения квантовой механики существует отличная от нуля вероятность, что микрочастица просочится через барьер при условии, что Uo>E, и окажется x>L. В 1 и 3:U=0 => Уравнение Шредингера запишем в виде: d(c.2)ψ/dx(c.2) + dm/h(в)(с.2)=0 (для первой и третьей областей). В 2:U=Uo=>(по уравнению Шредингера) d(c.2)ψ/dx(c.2)+dm(E-Uo)ψ/h(в)(с.2)=0 (для второй области). Решение этого уравнения будем искать в виде: ψ(x)=A e(c. Ø x) ψ1(x)=A1 e(c. i α x)+B1 e(c. – i α x) (I) ψ3(x)=A3 e(c. i α x)+B3 e(c. – i α x) (III) α=√2mE/h(в); A1 и A3- амплитуды волн, расспространяющихся в “+” направлении оси х.B1,B3- --||--||-- в «-» направлении оси х. ψ2(x)=A2 e(c.βx) + B2 e(c. –βx) (II) β=√2m(Uo – E)/h(в). Коэффициент отражения: R=|B1(c. 2)/ A1(c. 2)|. Т.к. в области 3 прошедшей волне отразиться не от чего, то отражённой волны в области 3 не будет и =>B3=0. Вероятность прохождения микрочастицы через потенциальный барьер определяется коэффициентом прозрачности барьера: D=|A3(c.2)/A1(c.2)|= =e(c.-2βL)=e(c. –2L /h(в)√2m(Uo – E)). Для объяснения этого явления на языке классической физике считают, что час-ца проделывает в барьере туннель и ч\з него проходит из области 1 в 3. Поэтому этот эффект называют туннельным эффектом. Билет №11 1. Дифракционная решетка. Используя графический метод, получите выражение, определяющее положение главных максимумов и минимумов в ее дифракционной картине. Система параллельных щелей, разделенных непрозрачными промежутками, называется дифракционной решеткой. Расстояние между щелями d=a+b называют периодом решетки. Рассмотрим диф. реш. d=a+b, перио или пост. диф. Лучи дифрак. от двух щелей имеют опред. разность хода Δ=sinφ, δ=2πΔ/λ=2πdsinφ/ λ.
2. Решение уравнения Шредингера для водородоподобных атомов. Квантовые числа и их физический смысл. Рассмотрим систему, состоящую из неподвижного ядра зарядом +z и 1-го электрона, находящегося около ядра (атом водорода или водородоподобная система). Потенциальная функция U(r)=-ze(c. 2)/4πε0r(c.2). Стационарное уравнение Шредингера для этого случая имеет вид Dψ+ (2m/ħ(c.2))*(E+(1/4πε0)*(ze(c.2)/r(c.2))*ψ=0. Для решения этого уравнения удобно перейти к сферическим координатам: ψ(x,y,z)=ψ(r,θ,φ). Расчёты показывают, что это уравнение Шредингера имеет решение при любом E>0(электрон вне атома). И при E<0, удовлетворяющие условию: En=-(1/4πε0)*(mz(c.2)e(c.4)/2ħ(c.2))*(1/n(с.2)). Собственные функции содержат 3 целочисленных параметра, которые носят название квантовых чисел, n – главное квантовое число, L – орбитальное (азимутальное) квантовое число, m – магнитное квантовое число. n=1,2,3…, L=0,…., (n-1), т.е. n значений, m=0,±1,…,±L т.е. (2L+1) значений. Квантовые числа имеют определенный физический смысл: n определяет энергию электрона в атоме. L определяет момент импульса электрона в атоме. M=√L(L+1)`*ħ. m определяет проекцию вектора момента импульса на некот-е выделенное направление(ориентация вектора M в пространстве):Nz=mħ- проекция M на внешнее направление. 3. Взаимодействие нуклонов. Свойства и природа ядерных сил. Громадная энергия связи нуклонов в ядре указывает на очень сильное взаимодействие между ними. Нейтроны и протоны в ядре удерживаются мощными ядерными силами притяжения, которые подавляют расталкивающее действие кулоновских сил между протонами Свойства ядерных сил: 1. Ядерные силы- это короткодействующие силы. Радиус их действия порядка 10-13 см. 3. Не центр-е.
Билет №12 1. Метод зон Френеля. Пользуясь этим методом, получите выражение для амплитуды световой волны в точке наблюдения. Френель предложил объединил симметрич. т-ки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от т-ки наблюдений была бы равна l/2 и след-но от краев 2-х сосдних волн приход. в т-ку наблюдения в противофазе и при наложении др. на др. ослабивают. Обозначим ч/з A1 амплитуду кол-й в т-ки P даваемым всеми т-ми источниками нах. внутри 1-й зоны Френеля. Ясно что A1 > A2 > A3… Результат амплитуды кол-й в т.P даваемое всеми зонами Френеля будет A = A1 - A2+A3 - A4…, A=A1/2+(A1/2-A2+ A3/2)+(A3/2-A4+ A5/2)+…=> A=A1/2. Видно что в том случае, если открыты все зоны Френеля то амплитуда кол-й = половине амплитуды кол-й даваемой 1-й зоной Френеля. Графический метод определения результирующей амплитуды. Разобьем каждую зону Френеля на ряд еще более мелких подзон (колец) настолько узких, что можно считать что кол-я от всех т-х источников внутри такой подзоны приходит в т.P с одинаковой фазой и одной амплитудой. Будем изображать результирующ. колб. от каждой подзоны в виде вектора, длина к-го результир. амплитуда, а угол поворота фазу коллеб. такой подзоны. 2. Сплошной и характеристический рентгеновские спектры. Формула Мозли. Рентгеновские лучи возникают при бомбардировке твёрдых мишеней быстрыми электронами. Рентгеновское излучение-коротковолновое электромагнитное излучене с λ=10(с. –8)—10(с. –12) м. При небольших ускоренных напряжениях наблюдается тормозное рентгеновское излучение, оно имеет сплошной спектр, максимум кот-го зависит от ускоренного напряжения. Электроны попав в вещество мишени испытывают сильное торможение, т.е. двигаются с ускорением, при этом они излучают электромагнитную волну. EU=hν=h*(c/λmin) => λmin=hc/eU. При увеличении ускоренного напряжения на фоне сплошного рентгеновского излучения появляется характеристическое рентгеновское излучение, обусловленное переходом электронов во внутреннюю электронную оболочку атомов. Характеристические рентгеновские спектры просты и состоят из нескольких линий, кот-е обозначаются Kα,Kβ,Lα,Lβ. 1/λ=R*(z-σ)(c.2)*((1/n(c.2))-(1/m(c.2))), где σ- постоянная экранирования. Мозли установил связь м\у частотой характеристических линий и z- порядковым номером элемента в таблице Менделеева. √w`=c*(z-σ) – закон Мозли, где с-сonst. Закон Мозли следует из сериальной формулы. 3. Явление сверхпроводимости.
Внешнее магн поле м разрушить сверхпров-е сост-е. Зависимость индукции этого поля и макс тока сверхпров-сти от темп-ры имеет вид: Теория сверхпров-сти очень сложна. В наиболее полном виде она была создана в 1957г. Бардином, Купером, Шриффером (БКШ-теория). Идея сверхпров-сти закл-ся в след-щем: Эл-ны в металлах кроме кулоновского отталкивания испытывает особый вид притягивания, в результате чего эл-ны объединяют куперовские пары. Расст-е м/у эл-нами в купер-й паре очень велико. Оно может превышать межатомное расст-е в металлах на много порядков. Т к куперовские пары эл-нов объединяются с противоположно напр-ным эл-ном, то суммарный спин Купер пары =0 и => куперовская пара яв-ся базоном(частица с целым спином). Базоны способны в неограниченном кол-ве накапливаться в одном энерг сост-и. Согласованное упор-е дв-е куперовских пар в одном энерг сост-и представляют из себя сверхпров-сть. Взаимное притяжение эл-нов в куперовской паре можно объяснить след образом: эл-н при своем дв-и в кр-ле искажает поле кр реш-ки – полож заряж ионы смещ-ся по напр-ю к этому эл-ну. В рез-те чего эл-н окружает себя “шубой” из полож заряж ионов. К ней и притягивается др эл-ны. Для такого дв-я 2х эл-нов необх-ма кр реш-ка. Чем сильнее взаимодействие эл-нов с кр реш-кой, тем проще образоваться куперовской паре, а проводнику сверхпров-сть. Чем лучшей пров-стью обладает в-во в обычном сост-и, тем труднее их перевести в сверхпров-е сост-е (серебро и медь не удается перевести).
Билет №13 1. Дисперсия света. Электронная теория дисперсии. Нормальная и аномальная дисперсии. Связь дисперсии с поглощением. Дисп. света – это зависимость показателя преломления от длины волны l или от n т.к. n=c/u, где u - ск-ть распрост-я света в среде то дисперсия света связана с зависимостью ск-ти распространения волны в вещ-ве от длины и частоты. Различают нормальную и аномальною дисп. При нормальной дисперсии показатель преломления уменьшается с длиной волны. Норм. dn/dl<0, dn/dn>0. При аномальной дисперсии наблюдается обратная зависимость dn/dl>0, dn/dn<0. Пусть Dw- интервал частот в к-м нах. частоты отдельных волн этой суперпозиции. Если спед. частота группы волн w0, Dw<<w0, то такую совокупность волн наз. волновым пакетом. Волновой пакет ограничен в пространстве и имеет вид
Волновой пакет м. описать ур-ем E=∫(w0-Dw/2) (w0+Dw/2)Awcos(wt-kwr+aw)dw При нормальной дисперсии U<u, при аномальной дисперсии U>u. Т.к. согласно теор. Максвелла n=Öe, то дисперсия света обусловлена зависимостью диэлектрич. проницаем. от частоты. Дисп. света объясняется взаимодейств.-м эл.-маг. волны с заряжен. частиц. вещ-ва. Эл.-маг. волна заставляет вещ-во вынуждено колебаться электрон. в атомах, т.к. расс-е м/у соседними атомами в диэлектрике значительно < длины волны света, то эл-ны соседних атомов колеблются в одной фазе. В результате смещения эл-в. в атомах меняется дипольные моменты в атомах => атомы излучают вторич. эл.-маг. волны n-которых = n падающей волны т.к. эл-ны в атомах смещаются колеб-ся спифазно эти вторичные волны будут когерен-ми и при наложении интен-ть как м/у собой так и с волной. Результат интерф. зависит от их амплитуд и фаз. В однородном изотропном диэлектрике в результ. интерф. образуется проходящая волна, фазовая ск-ть к-й зависит от n, а направ. совпад. с направ. падающей эл.-маг. волны. n2=e=1+X=1+Pe/(e0E), где X-диэл.-я восприимчивость вещ-ва, Е-напряж. поля падающ. эл-маг. волны, Pe- электр. поляризов. Пусть напряж. эл-го поля направл. вдоль OX, E=Eoxcos(wt-kx+a), Pe=pen0, где pe-дипольн. момент отдельн. атома, n0- число атомов в ед. объема. Т.к. поле направ вдоль ox то pe=-ex, т.о. Pe=-exn0 => n2=1-en0x/(Eoxcos(wt-kx+a)), Запишем диф-е ур-е описыв. движен. эл-в в атоме F=ma=md2x/(d2t) на эл-н в атоме действует a) Fкул=-eEoxcos(wt-kx+a), b) Fупр=-kx=-mw02x, w0=Ö(k/x) => k=w02m,=> md2x/(d2t)=-eEoxcos(wt-kx+a)-mw02x, m- масс. эл-на. Решая это диф. ур-е окнчательно получаем n=Ö(1+n0e2/(e0E(w02-w02))). Видно что это выр-е терпит разрыв при w=w02 такой рез. получается в рез-те того что в 2-м законе Ньютона не была учтена сила трения (затухания) если учесть затухание то разрыва этой ф-ии не будет. Во всякой реальной колеб. сист. всегда есть затухание. Аномальная дисперсия набл-ся в области част-т близких к колеб. эл-в в атоме т.к. в общем случае таких частот (резонансов) м. б. несколько. Т.к. аномальная диспер. света наблюд. на част–х близких к част–м собств. колеб. эл–в в атомах на к–х вещ–во сильно поглощ. свет, то аномальная диспер. наблюд. в области полос поглощ. вещ–ва. 2. Искусственное двойное лучепреломление. Метод фотоупругости. Эффект Керра. В прозрачных изотропных средах и в кристаллах куб. системы может возникать двойной луч преломления под влиянием внеш. воздейс–й, в частности это происходит при мех. дифор. тв. тел.
Электрооптический эффект. Э. эф. это возник–е 2–го луча релом–я в жидкостях и аморфн. телах под воздейст. эл–го поля, Эффект–Керра, Под деист. внеш. эл. поля в жид. и аморф. телах возникает анизотропия диэлектр–й проницаемости а рез–те чего в нах становит. возмож. 2–й луче преломл. Эф. Керра был обнаружен и в газах. Меры возникающие фактической анизотропией яв–ся разность показ. прелом. в обыкн. и необыкн. лучей. n0–nL=k1E2, D=L(n0–nL)=Lk1E2, s=2pD/l=2pDLk1E2/l, b=k1/l–пост. Керра для данного вещ. 3. Электронные и дырочные полупроводники. P-n переход и его свойства.
Пусть в 4х валент. Полупр-к внедрены атомы 5валент примеси. В случае 5валент примеси 4 эл-на этой примеси будут задействованы в образ-и межатомных связей в кристалле. 5й эл-н примеси в создании связи не участвуют, и поэтому оказ-ся слабосвяз-м в атомной примеси. При увел-и темп-ры полупр-ка отрыв-ся прежде всего этот 5й эл-н, при этом обр-ся своб эл-ны, но дырки при этом не образ-ся. Такая примесь наз-ся донорной примесью. В случае донорной примеси проводимость полупроводника яв-ся электронной, а сам полупр-к наз-ся полупр-к n-типа. В случае донорной примеси энерг уровни нах-ся у потолка запрещ зоны.
В этом случае одна из связей оказ-ся недоукомплектованной эл-ном. Эту связь может доукомплектовать эл-н из соседней связи основного полупр-ка. При этом своб-е эл-не не появ-ся. Такая примесь наз-ся акцепторной. А сам полупр-к – полупр-ком p-типа. В полупр-ке p-типа проводимость дырочная. В случае акцепторной примеси энерг уровни нах-ся у дна запрещ зоны. P-n переход представляет из себя тонкий слой на границе м/у 2мя областями одного и того же кр-ла, отлич-ся типом проводимости. В n-области осн-ми носителями яв-ся эл-ны, а в p-области – дырки.
Подадим на p-n переход внеш напр-е. Если на p-область отриц напр-е, а на n полож (обратное), то в этом случае внеш поле совпадать по напр-ю с полем запирающ слоя и в этом случае тока ч/з p-n переход не будет. Поменяем (прямое). Если внеш поле будет больше, чем поле запир слоя, то ток будет. Если внеш поле постепенно увел-ть от 0, то ток будет плавно возр-ть, достигнув макс знач-я, когда внеш поле полностью скомпенсирует поле запир слоя.
p-n переход пропускает ток только в одном напрвлении. Т о p-n переход яв-ся полупр-ковым диодом.
Билет №14 1. Поляризация света при отражении. Закон Брюстера. Опыт показывает, что при падении на диэлектрик (вода, стекло) отраженный и преломленный лучи всегда частично поляризованы. Степень поляризации при этом зависит от угла падения и показателя преломления отражающей среды. При этом отраженный луч частично поляризован в плоскости, перпендикулярной плоскости падения, а преломленный - в плоскости падения. Условие полной поляризации состоит в том, чтобы угол между отраженным и преломленным лучами был равен π/2, т.е. чтобы n=sin i0/sin r= sin i0/cos i0=tg i0. Это соотношение называют законом Брюстера. Этот закон объясняется тем, что отраженный преломленный лучи представляют собой вторичное излучение, возбужденное падающей волной. Электроны колеблются в направлении вектора Е. Однако электрический диполь не излучает в этом направлении, максимум излучения приходится на перпендикулярное направление.
Уравнение Шредингера для стационарных состояний: Если микрочас-ца находится в стационарном силовом поле(т.е. силовое поле не меняется со временем), то потенциальная функция U(x,y,z,t) не будет зависеть от времени. U(x,y,z,t)=U(x,y,z). В этом случае волновую функцию можно представить в виде произведения 2-х функций: 1 из кот-х зависит только от координат, а другая- от времени. ψ(x,y,z,t)= ψ’ (x,y,z)*α(t). Подставив это выражение во временное уравнение Шредингера, которое выглядит: (-h(в)(c.2)/2m)*Dψ+uψ=i h (в) ∂ψ/∂t можно показать, что
d(c.2)ψ/dx(c.2)+2mEψ/h(в)(c.2)=0. Это волновое уравнение, решением кот-го явл-ся плоская монохроматическая волна. Ψ(х)=e(c.i(wt-kx))=e(c.–i(px-Et)/h(в);E=h(в)w, k=2π/λ=2π/(h(в)/p))=p/h(в). Т.о. волновая функция свободной частицы представляет из себя плоскую монохроматическую волну Де-Бройля. Частица в бесконечно глубокой одномерной потенциальной яме. Зададим потенциальную функцию U(x) в виде U(x)=∞ при х<0 x>a. U(x)=0 при 0≤х≤a. Такое потенциальное поле называется потенциальной ямой. Т.к. яма бесконечно глубокая, то за её пределы частица выйти не может и следовательно вероятность обнаружить частицу в области 1 и 3 =0.=> в области 1 и 3 ψ(х)=0. Т.к. волновая функция должна быть непрерывной, то ψ(0)= ψ(a)=0. Запишем уравнение Шредингера для области 2: d(c.2)ψ/dx(c.2) + (2m/h(в)(с.2))*E ψ = 0 Обозначим k(c. 2)= (2m/h(в)(с.2))*E. Ψ’’+ k(c. 2)Ψ=0. – волновое уравнение, решением которого является функция вида: ψ(х)=b*sin(kx+α). Из условия ψ(0)=b*sin(0+α)=0, sin(0+α), α=0. ψ(a)=b*sin(ka+α)=0//b<>0=>ka=πn, где n=1,2,3,…=> k=πn/a, где n=1,2,3,… π(c.2)n(c.2)/a(c.2)=2mE/h(в)(с.2)=> E=π(c.2)*h(в)(с.2)n(c.2)/2ma(c.2). Частицы внутри потенциальной ямы могут только дискретный ряд значений, т.е. частицы в потенциальной яме квантуются. n-главное квантовое число, оно определяет энергию микрочас-цы. b определим из условия нормировки волновой функции: =>b= 3. Основы квантовой теории электропроводности металлов. Первоначально в кв т мет-ов, также как и в классич теории, вводится понятие о газе своб эл-нов. Т к внутри мет-ла эл поле отсутствует, а для того, чтобы выйти за пределы мет-в эл-н должен преод-ть раб выхода, то можно считать, что газ своб эл-нов представляет из себя эл-ны нах-ся в потенц яме, дно к-й плоское, а длина = работе выхода. Первоначально в кв т учитывалось, что эл-ны явл-ся фермионами (частицы с полуцелым спином) и поэтому подчиняются принципу запрета Паули => согласно кв т эл-ны занимают внутри этой ямы все уровни, начиная с самого высшего до уровня Ферми. => глубина потенц ямы нужно отсчитывать не от ее дна, а от уровня Ферми. При помещении пров-ка во внеш эл поле согласно классич теории понимают упорядоченное дв-е всех своб эл-ны. Согласно кв т упор-е дв-е появ-ся только у эл-нов нах-ся вблизи уровня Ферми. Согласно класс теории причиной сопротивления пров-ков яв-ся рассеяние эл-нов проводимости на дефектах кр реш-ки. Согласно кв т – распространение волн де-Бройля.
Билет №15 1. Зоны Френеля. Получите выражение для радиуса зон Френеля в случае сферического и плоского фронта световой волны. Френель предложил объединить симметрич. т-ки световой волны в зоны выбирая конфигурацию и размеры зоны такие что разность хода лучей от краев 2-х соседних зон от т-ки наблюдений была бы равна l/2 и след-но от краев 2-х сосдних волн приход. в т-ку наблюдения в противофазе и при наложении др. на др. ослабивают. Обозначим ч/з A1 амплитуду кол-й в т-ки P даваемым всеми т-ми источниками нах. внутри 1-й зоны Френеля. Ясно что A1 > A2 > A3…
Пусть на пути сферич. фронта свет. волны распол. непрозрачный экран, к-й открыв. 1-е m зон Френеля. 1. четное A=A1/2+(A1/2-A2+ A3/2)+ A3/2+…+ (Am-1/2-Am)=A1/2+Am-1/2-Am=(A1+Am-1)/2-Am 2. m-нечетное A=A1/2+(A1/2-A2+ A3/2)+…+ (Am/2-Am-1 Am/2)+Am/2=A1/2+Am-1/2-Am=(A1+Am-1)/2-Am, => A=(A1+Am)/2 Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.388 сек.) |