|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Статистический контроль качестваПри крупносерийном и массовом производстве широкое распространение получили методы статистического контроля качества (statistical quality control (англ.), SQC). Наиболее известными среди них стали «семь инструментов контроля качества», которые сначала широко применялись в кружках качества в Японии, а затем и в других странах, благодаря своей эффективности и доступности для рядовых работников предприятий.[15] В состав этих «семи инструментов» входят: диаграмма Парето, причинно-следственная диаграмма, контрольные карты, гистограммы, метод расслоения, графики, диаграмма разброса. Краткое содержание этих методов применительно к управлению качеством заключается в следующем: Метод расслоения (послойный анализ, районированная выборка — stratification (англ.)) применяют для выяснения причин разброса характеристик изделий. Существо метода заключается в разделении (расслоении) полученных характеристик в зависимости от различных факторов: квалификации работников, качества исходных материалов, методов работ, характеристик оборудования и т. д. При этом определяется влияние того или иного фактора на характеристики изделия, что позволяет принять необходимые меры для устранения их недопустимого разброса. Графики (диаграммы) используются для наглядности и облегчения понимания взаимозависимости количественных величин или их изменений во времени. Чаще всего применяются линейные, круговые, столбчатые и ленточные графики. Диаграмма Парето (Pareto diagram), названная так по имени ее автора, итальянского ученого-экономиста Парето (1848—1923), позволяет наглядно представить величину потерь в зависимости от различных дефектов. (см. кривая Парето). Благодаря этому можно сначала сосредоточить внимание на устранении тех дефектов, которые приводят к наибольшим потерям. Для выяснения причин этих дефектов целесообразно дополнительно использовать причинно-следственную диаграмму. После выяснения причин и устранения дефектов вновь строится диаграмма Парето с целью проверки эффективности принятых мер.
Причинно-следственная диаграмма (cause and effect diagram) применяется, как правило, при анализе дефектов, приводящих к наибольшим потерям. Она позволяет выявить причины таких дефектов и сосредоточиться на устранении этих причин. При этом анализируются четыре основных причинных фактора: человек, машина (оборудование), материал и метод работ. При анализе этих факторов выявляются вторичные, а может быть, и третичные причины, приводящие к дефектам и подлежащие устранению. Поэтому для анализа дефектов и построения диаграммы необходимо определить максимальное число причин, которые могут иметь отношение к допущенным дефектам. Такую диаграмму в виде рыбьего скелета предложил японский ученый Каору Исикава. Его диаграмму называют также «ветвистой схемой характерных факторов». Иногда ее еще называют диаграммой «четыре М» — по составу основных факторов: Man (человек), Method (метод), Material (материал), Machine (машина). Диаграмма Исикавы: Гистограмма представляет собой столбчатый график и применяется для наглядного изображения распределения конкретных значений параметра по частоте повторения за определенный период времени (неделя, месяц, год). При нанесении на график допустимых значений параметра можно определить, как часто этот параметр попадает в допустимый диапазон, смещается в пределах допуска или выходит за его пределы. Полученные данные анализируют, применяя другие методы: · потери от брака в зависимости от различных дефектов исследуют с помощью диаграммы Парето; · причины дефектов определяют с помощью причинно-следственной диаграммы, метода расслоения и диаграммы разброса; · изменение характеристик во времени определяют по контрольным картам. Диаграмма разброса (Scatter diagram — корреляционная диаграмма) строится как график зависимости между двумя параметрами. Это позволяет определить, есть ли взаимосвязь между этими параметрами. И если такая взаимосвязь существует, можно устранить отклонение одного параметра, воздействуя на другой. Контрольная карта (Control chart) — это разновидность графика, который отличается наличием контрольных границ, обозначающих допустимый диапазон разброса характеристик в обычных условиях течения процесса. (см. Контрольная карта Шухарта). Выход характеристик за пределы контрольных границ означает нарушение стабильности процесса и требует проведения анализа причин и принятия соответствующих мер. Перечисленные «семь инструментов» помогают решать большинство возникающих проблем качества. Для решения более сложных проблем дополнительно могут применяться «семь новых инструментов контроля качества»: Диаграмма сродства, Диаграмма зависимостей, Древовидная схема, Матричная диаграмма, Стрелочная диаграмма, Диаграмма планирования оценки процесса, Анализ матричных данных. Для подробного изучения статистических методов следует обратиться к специальной литературе, а также — к международному стандарту ИСО 10017 по статистическим методам[16] Стандартизацией в области статистических методов на международном уровне занимается технический комитет Международной организации по стандартизации ИСО/ТК 69 «Применение статистических методов». Материалы этого комитета могут представлять интерес для тех, кто по роду работ связан с использованием статистических методов. Кроме перечисленных статистических методов, для контроля и управления качеством применяется метод «Шесть сигм» и методы Тагути. Метод «Шесть сигм» используется для статистического управления технологическим процессом с целью снижения вероятности отказов продукции. Наименьшая вероятность отказов достигается при условии стабильного попадания шести среднеквадратичных отклонений от номинала (плюс - минус три сигмы) в заданное поле допуска с определённым запасом. Для этого требуется высокая точность изготовления деталей, обеспечивающая минимальные значения сигм. Традиционно статистический контроль процессов в производстве представляет собой случайный выбор части продукции и её тестирование. Отклонения непрерывно проверяются на допустимость и где необходимо корректируются ещё до производства бракованных частей.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |