АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Компьютерные сети. Эта глава посвящена компьютерным сетям — основам построе­ния, протоколам, стандартам, сетевым компонентам

Читайте также:
  1. X. КОМПЬЮТЕРНЫЕ ВИРУСЫ
  2. Глава 6. Локальные и глобальные компьютерные сети
  3. Как классифицируют компьютерные сети по степени географического распространения?
  4. Компьютерные (новые информационные) технологии обучения
  5. Компьютерные программы - это воплощенные на материальном носителе упорядоченные совокупности команд и данных для получения определенного результата с помощью компьютера.
  6. Компьютерные сети
  7. Компьютерные сети
  8. Компьютерные сети.
  9. КОМПЬЮТЕРНЫЕ СИСТЕМЫ АДМИНИСТРАТИВНО-УПРАВЛЕНЧЕСКОЙ СВЯЗИ
  10. ЛОКАЛЬНЫЕ И ГЛОБАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ
  11. Российские компьютерные системы бронирования

Эта глава посвящена компьютерным сетям — основам построе­ния, протоколам, стандартам, сетевым компонентам. Здесь также рассмотрены основы построения 1п1егпе1 — способы передачи инфор­мации, адресация и службы.

7,1. Назначение и классификация компьютерным сетей

Современные информационные технологии нуждаются во все более совершенных средствах обработки информации. Поэтому по­требности в таких средствах постоянно растут. Объединение компь­ютеров и средств коммуникации оказало существенное влияние на принципы организации компьютерных систем. Модель, в которой один компьютер выполнял всю необходимую работу по обработке данных, уступила место модели, представляющей собой большое ко­личество отдельных, но связанных между собой компьютеров. Такие системы называются компьютерными сетями. Два или более компь­ютера называются связанными между собой, если они могут обмени­ваться информацией.

Для каких же целей используются компьютерные сети?

• Первая цель — предоставление доступа к программам, обору­
дованию и особенно данным для любого пользователя сети. Это
называется совместным использованием ресурсов.

• Вторая цель — обеспечение высокой надежности при помощи
альтернативных источников информации. Например, все файлы
могут быть расположены на двух или трех машинах одновремен­
но, так что, если одна из них недоступна по какой-либо причи­
не, то используются другие копии. Возможность продолжать ра­
боту, несмотря на аппаратные проблемы, имеет большое
значение для военных и банковских задач, воздушного транспор­
та, безопасности ядерного реактора и т.п.

• Третья цель — экономия средств. Небольшие компьютеры об­
ладают значительно лучшим соотношением цена—производи­
тельность, нежели большие. Это обстоятельство заставляет раз-


работников создавать системы на основе модели клиент-сервер. Обмен информацией в модели клиент-сервер обычно принима­ет форму запроса серверу на выполнение каких-либо действий. Сервер выполняет работу и отсылает ответ клиенту. Обычно в сети количество клиентов значительно больше числа используе­мых ими серверов.

• Четвертая цель — масштабируемость, т.е. способность увели­
чивать производительность системы по мере роста нагрузки. В
случае модели клиент-сервер новые клиенты и новые серверы
могут добавляться по мере необходимости.

• Пятая цель — ускорение передачи информации. Компьютерная
сеть является мощным средством связи между удаленными друг
от друга пользователями. Если один из них изменяет документ,
находящийся на сервере, в режиме оп-1те, остальные могут не­
медленно увидеть эти изменения.

Имеется два важнейших параметра классификации сетей: техно­логия передачи и размеры.

Существуют два типа технологии передачи:

• широковещательные сети;

• сети с передачей от узла к узлу.

Широковещательные сети обладают единым каналом связи, со­вместно используемым всеми машинами сети. Короткие сообщения, называемые пакетами, посылаемые одной машиной, принимаются всеми машинами. Поле адреса в пакете указывает, кому направляет­ся сообщение. При получении пакета машина проверяет его адрес­ное поле. Если пакет адресован этой машине, она обрабатывает па­кет. Пакеты, адресованные другим машинам, игнорируются.

Сети с передачей от узла к узлу состоят из большого количества соединенных пар машин. В такой сети пакету необходимо пройти через ряд промежуточных машин, чтобы добраться до пункта назна­чения. Часто при этом существует несколько возможных путей от источника к получателю.

Обычно небольшие сети используют широковещательную пере­дачу, тогда как в крупных сетях применяется передача от узла к узлу.

Другим критерием классификации сетей является их размер. Сети можно разделить на локальные, муниципальные и глобальные. И, наконец, существуют объединения двух и более сетей. Хорошо из­вестным примером такого объединения является 1п1егпе1. Размеры


сетей являются важным классификационным фактором, поскольку в сетях различного размера применяется различная техника.

Локальными сетями (ЛВС — локальные вычислительные сети или 1АМ — Ьоса! Агеа Не1\уог1с) называют сети, размещающиеся, как пра­вило, в одном здании или на территории какой-либо организации размерами до нескольких километров. Их часто используют для пре­доставления совместного доступа компьютеров к ресурсам (напри­мер, принтерам) и обмена информацией. Локальные сети отличают­ся от других сетей тремя характеристиками: размерами, технологией передачи данных и топологией. Обычные ЛВС имеют пропускную способность канала связи от 10 до 100 Мбит/с, небольшую задержку — десятые доли мкс и очень мало ошибок.

Муниципальные или региональные сети (МАН — Ме1гороИ1ап АН) являются увеличенными версиями локальных сетей и обычно исполь­зуют схожие технологии. Такая сеть может объединять несколько предприятий корпорации или город. Муниципальная сеть может поддерживать передачу цифровых данных, звука и включать в себя кабельное телевидение. Обычно муниципальная сеть не содержит переключающих элементов для переадресации пакетов во внешние линии, что упрощает структуру сети.

Глобальные сети (^к!е АН или ГВС) охватывают значительную территорию, часто целую страну или даже континент. Они объеди­няют множество машин, предназначенных для выполнения прило­жений. Эти машины называются хостами. Хосты соединяются ком­муникационными подсетями или просто подсетями. Задачей подсети является передача сообщений от хоста хосту, подобно тому, как те­лефонная система переносит слова говорящего слушающему. То есть коммуникативный аспект сети — подсеть отделен от прикладного ас­пекта — хостов, что значительно упрощает структуру сети.

7,2, Типы сетей

Сети подразделяются на два типа: одноранговые и на основе сер­вера.

Между этими двумя типами сетей существуют принципиальные различия, которые определяют их разные возможности. Выбор типа сети зависит от многих факторов: размера предприятия и вида его деятельности, необходимого уровня безопасности, доступности адми-


нистративной поддержки, объема сетевого трафика, потребностей сетевых пользователей, финансовых возможностей.

В одноранговой сети все компьютеры равноправны. Каждый компьютер функционирует и как клиент, и как сервер. Нет отдель­ного компьютера, ответственного за администрирование всей сети. Пользователи сами решают, какие ресурсы на своем компьютере сде­лать доступными в сети.

Одноранговые сети, как правило, объединяют не более 10 ком­пьютеров. Отсюда их другое название — рабочие группы. Одноранго­вые сети относительно просты, дешевле сетей на основе сервера, но требуют более мощных компьютеров. Требования к производитель­ности и уровню защиты сетевого программного обеспечения (ПО) ниже, чем в сетях с выделенным сервером. Поддержка одноранговых сетей встроена во многие операционные системы (ОС), поэтому для организации одноранговой сети дополнительного ПО не требуется.

Если в сети более 10 компьютеров, то одноранговая сеть стано­вится недостаточно производительной. Поэтому большинство сетей имеют другую конфигурацию — они работают на основе выделенного сервера. Выделенным сервером называется такой компьютер, кото­рый функционирует только как сервер и не используется в качестве клиента или рабочей станции. Он специально оптимизирован для быстрой обработки запросов от сетевых клиентов и обеспечивает за­щиту файлов и каталогов. Сети на основе сервера стали промышлен­ным стандартом.

Основным аргументом при выборе сети на основе сервера явля­ется защита данных. Проблемами безопасности занимается один ад­министратор: он формирует единую политику безопасности и при­меняет ее в отношении каждого пользователя сети.

Сети на основе сервера, в отличие от одноранговых сетей, спо­собны поддерживать тысячи пользователей. При этом к характерис­тикам компьютеров и квалификации пользователей предъявляются более мягкие требования, чем в одноранговых сетях.

7,3, Топология сетей

Термин топология сети характеризует способ организации фи­зических связей компьютеров и других сетевых компонентов. Выбор той или иной топологии влияет на состав необходимого сетевого


оборудования, возможности расширения сети и способ управления сетью. Топология — это стандартный термин. Все сети строятся на основе базовых топологий: шина, звезда, кольцо, ячеистая. Сами по себе базовые топологии не сложны, однако на практике часто встре­чаются довольно сложные их комбинации.

Шина. Эту топологию (рис. 7.1) часто называют линейной шиной. Она наиболее простая из всех топологий и весьма распространенная. В ней используется один кабель, называемый магистралью или сег­ментом, вдоль которого подключены все компьютеры.


С


к


к


к


к


Рис. 7. 1. Топология шина: С — сервер, К — компьютер, Т — терминатор

В сети с топологией шина данные в виде электрических сигна­лов передаются всем компьютерам сети, но принимает их тот, адрес которого совпадает с адресом получателя, зашифрованном в этих сигналах. Причем в каждый момент времени передачу может вести только один компьютер. Поэтому производительность такой сети зависит от количества компьютеров, подключенных к шине. Чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. На быстродействие сети также влияют:

• тип аппаратного обеспечения сетевых компьютеров;

• частота, с которой компьютеры передают данные;

• тип работающих сетевых приложений;

• тип сетевого кабеля;

• расстояние между компьютерами в сети.

Шина — пассивная топология: компьютеры только слушают пе­редаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому выход одного или нескольких компьютеров из строя никак не сказывается на работе сети.


Электрические сигналы распространяются по всему кабелю — от одного конца к другому. Сигналы, достигшие концов кабеля, отра­жаются от них. Возникает наложение сигналов, находящихся в раз­ных фазах, и, как следствие, их искажение и ослабление. Поэтому сигналы, достигшие конца кабеля, следует погасить. Для гашения сигналов на концах кабеля устанавливают терминаторы. При разрыве кабеля или отсутствии терминаторов функционирование сети прекра­щается. Сеть падает.

Звезда. При топологии звезда (рис. 7.2) все компьютеры с помо­щью сегментов кабеля подключаются к центральному устройству, называемому концентратором (ЬиЬ). Сигналы от передающего ком­пьютера поступают через концентратор ко всем остальным.


С


к


к


к


Концентратор



 


 


К


К


К


К


Рис. 7. 2. Топология звезда

В настоящее время концентратор стал одним из стандартных компонентов сетей. В сетях с топологией звезда он, например, слу­жит центральным узлом. Концентраторы делятся на активные и пас­сивные. Активные регенерируют и передают сигналы так же, как репитеры. Их называют многопортовыми повторителями. Обычно они имеют от 8 до 12 портов для подключения компьютеров. Актив­ные концентраторы следует подключать к электрической сети. К пас­сивным концентраторам относятся монтажные или коммутирующие панели. Они просто пропускают через себя сигнал, не усиливая и не восстанавливая его. Пассивные концентраторы не надо подключать к электрической сети.

Недостатки этой топологии: дополнительный расход кабеля, ус­тановка концентратора. Главное преимущество этой топологии пе­ред шиной - более высокая надежность. Выход из строя одного или


нескольких компьютеров на работу сети не влияет. Любые неприят­ности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора приво­дит к падению сети. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администра­тором передачи.

Кольцо. Компьютеры подключаются к кабелю, замкнутому в кольцо (рис. 7.3). Сигналы передаются по кольцу в одном направле­нии и проходят через каждый компьютер. В отличие от пассивной топологии шина, здесь каждый компьютер выступает в роли репитера (повторителя), усиливая сигналы и передавая их следующему ком­пьютеру. Поэтому выход из строя хотя бы одного компьютера при­водит к падению сети.


к


к


к


с


к


к


к


Рис. 7. 3. Топология кольцо

Способ передачи данных по кольцу называется передачей марке­ра. Маркер (иЖеп) — это специальная последовательность бит, пере­дающаяся по сети. В каждой сети существует только один маркер. Маркер передается по кольцу последовательно от одного компьюте­ра к другому до тех пор, пока его не захватит тот компьютер, кото­рый хочет передать данные. Передающий компьютер добавляет к маркеру данные и адрес получателя, и отправляет его дальше по коль­цу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя. Затем принимающий компьютер посылает передающему сообщение, в котором подтверж­дает факт приема. Получив подтверждение, передающий компьютер


восстанавливает маркер и возвращает его в сеть. Скорость движения маркера сопоставима со скоростью света. Так, в кольце диаметром 200 м маркер может циркулировать с частотой 477 376 об/с.

Ячеистая топология. Сеть с ячеистой топологией обладает вы­сокой избыточностью и надежностью, так как каждый компьютер в такой сети соединен с каждым другим отдельным кабелем (рис. 7.4).

Рис. 7.4. Ячеистая топология

Сигнал от компьютера-отправителя до компьютера-получателя может проходить по разным маршрутам, поэтому разрыв кабеля не сказывается на работоспособности сети. Основной недо­статок — большие затраты на прокладку кабеля, что компенсируется высокой надежностью и простотой обслуживания. Ячеистая тополо­гия применяется в комбинации с другими топологиями при постро­ении больших сетей.

Кроме базовых топологий существуют их комбинации — комби­нированные топологии. Чаще всего используются две комбинирован­ные топологии: звезда-шина и звезда-кольцо. Звезда-шина — не­сколько сетей с топологией звезда объединяются при помощи магистральной линейной шины (к концентратору подключены ком­пьютеры, а сами концентраторы соединены шиной). Выход из строя одного компьютера не сказывается на работе всей сети, а сбой в ра­боте концентратора влечет за собой отсоединение от сети только подключенных к нему компьютеров и концентраторов. Звезда-коль­цо — отличие состоит только в том, что концентраторы в звезде-шине


соединяются магистральной линейной шиной, а в звезде-кольце кон­центраторы подсоединены к главному концентратору, внутри кото­рого физически реализовано кольцо.

7,4, Сетевые компоненты

7,4,1, СетеВые кабели

На сегодня подавляющая часть компьютерных сетей использует для соединения кабели. Это среда передачи сигналов между компь­ютерами.

В большинстве сетей применяются три основные группы кабелей:

• коаксиальный кабель;

• витая пара (1м81ес1 ра!г), неэкранированная (ипзЫеШес!) и эк­
ранированная (зЫеШес!);

• оптоволоконный кабель.

Коаксиальный кабель до недавнего времени был самым распро­страненным. Недорогой, легкий, гибкий, удобный, безопасный и простой в установке.

Существует два типа коаксиальных кабелей: тонкий (специфи­кация 10Ва8е2) и толстый (спецификация 10Ва$е5).

Тонкий — гибкий, диаметр 0,64 см (0,25"). Прост в применении и подходит практически для любого типа сети. Подключается непо­средственно к плате сетевого адаптера. Передает сигнал на 185 м практически без затухания. Волновое сопротивление — 50 ом.

Толстый — жесткий, диаметр 1,27 см (0,5"). Его иногда называ­ют стандартный ЕИпегпе! (первый кабель в популярной сетевой ар­хитектуре). Жила толще, затухание меньше. Передает сигнал без за­тухания на 500 м. Используют в качестве магистрали, соединяющей несколько небольших сетей. Волновое сопротивление - 75 ом.

Для подключения к толстому коаксиальному кабелю применя­ется специальное устройство - трансивер (1гап8се1уег - приемопере­датчик). Он снабжен коннектором, который называется вампир или пронзающий ответвитель. К сетевой плате трансивер подключается с помощью кабеля с разъемом. Для подключения тонкого коаксиаль­ного кабеля используются ВМС-коннекторы (ВгШзЬ Мауа! Соппес1ог). Применяются ВМС—Т-коннекторы для соединения сетевого кабеля


с сетевой платой компьютера, В1ЧС—баррел-коннекторы для сращи­вания двух отрезков кабеля, В1ЧС-терминаторы дяя поглощения сиг­налов на обоих концах кабеля в сетях с топологией шина.

Витая пара — это два перевитых изолированных медных прово­да. Несколько витых пар проводов часто помещают в одну защит­ную оболочку. Переплетение проводов позволяет избавиться от элек­трических помех, наводимых соседними проводами и другими внешними источниками, например двигателями, трансформаторами, мощными реле.

Неэкранированная витая пара (УТР) широко используется в ЛВС, максимальная длина 100 м. УТР определена особым стандартом, в котором указаны нормативные характеристики кабелей для различ­ных применений, что гарантирует единообразие продукции.

Экранированная витая пара (8ТР) помещена в медную оплетку. Кроме того, пары проводов обмотаны фольгой. Поэтому 8ТР мень­ше подвержены влиянию электрических помех и может передавать сигналы с более высокой скоростью и на большие расстояния.

Преимущества витой пары — дешевизна, простота при подклю­чении. Недостатки — нельзя использовать при передаче данных на большие расстояния с высокой скоростью.

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это надежный способ передачи, так как электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные.

Оптоволоконные линии предназначены для перемещения боль­ших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается. Оптоволокно переда­ет сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами: одно — для передачи, дру­гое — для приема.

Скорость передачи данных в настоящее время составляет от 100 Мбит/с. Между тем, получает все большее распространение ско­рость 1 Гбит/с, теоретически — до 200 Гбит/с. Расстояние — многие километры. Кабель не подвержен электрическим помехам. Суще­ственным недостатком этой технологии является дороговизна и слож­ность в установке и подключении.

Типичная оптическая сеть состоит из лазерного передатчика све-


та, мультиплексора/демультиплексора для объединения оптических сигналов с разными длинами волн, усилителей оптических сигналов, демультиплексоров и приемников, преобразующих оптический сиг­нал обратно в электрический. Все эти компоненты обычно собира­ются вручную.

Для передачи по кабелю кодированных сигналов используют две технологии — немодулированную и модулированную передачу.

Немодулированные системы передают данные в виде цифровых сигналов, которые представляют собой дискретные электрические или световые импульсы. При таком способе цифровой сигнал ис­пользует всю полосу пропускания кабеля (полоса пропускания — раз­ница между максимальной и минимальной частотой, которую мож­но передать по кабелю). Устройство в сетях с немодулированной передачей посылает данные в обоих направлениях. Для того, чтобы избежать затухания и искажения сигнала в немодулированных сис­темах, используют репитеры, которые усиливают и ретранслируют сигнал.

Модулированные системы передают данные в виде аналогового сигнала (электрического или светового), занимающего некоторую полосу частот. Если полосы пропускания достаточно, то один кабель могут одновременно использовать несколько систем (например, транслировать передачи кабельного телевидения и передавать дан­ные). Каждой передающей системе выделяется часть полосы пропус­кания. Для восстановления сигнала в модулированных системах ис­пользуют усилители. В модулированной системе устройства имеют раздельные тракты для приема и передачи сигнала, так как передача идет в одном направлении. Чтобы устройства могли и передавать, и принимать данные, используют разбиение полосы пропускания на два канала, которые работают с разными частотами для передачи и приема, или прокладку двух кабелей — для передачи и приема.

7.4,2, БеспроВоЭная среЗа

Словосочетание беспроводная среда не означает полное отсутствие проводов в сети. Обычно беспроводные компоненты взаимодейству­ют с сетью, в которой в качестве среды передачи используется ка­бель. Такие сети называют гибридными.

Беспроводная среда обеспечивает временное подключение к су-


шествующей кабельной сети, гарантирует определенный уровень мобильности и снижает ограничения на протяженность сети. При­меняется в служебных помещениях, где у сотрудников нет постоян­ного рабочего места, в изолированных помещениях и зданиях, в стро­ениях, где прокладка кабелей запрещена.

Существуют следующие типы беспроводных сетей: ЛВС, расши­ренные ЛВС и мобильные сети (переносные компьютеры). Основные различия между ними - параметры передачи. ЛВС и расширенные ЛВС используют передатчики и приемники той организации, в ко­торой функционирует сеть. Для переносных компьютеров средой передачи служат общедоступные сети (например, телефонная или 1п1егпе1).

ЛВС выглядит и функционирует практически так же, как и ка­бельная, за исключением среды передачи. Беспроводный сетевой адаптер с трансивером установлен в каждом компьютере, и пользо­ватели работают так, будто их компьютеры соединены кабелем. Трансивер или точка доступа обеспечивает обмен сигналами между компьютерами с беспроводным подключением и кабельной сетью. Используются небольшие настенные трансиверы, которые устанав­ливают радиоконтакт с переносными устройствами.

Работа беспроводных ЛВС основана на четырех способах пере­дачи данных: инфракрасном излучении, лазере, радиопередаче в уз­ком диапазоне (одночастотной передаче), радиопередаче в рассеян­ном спектре.

7,4,3, Платы сетевого адаптера

Платы сетевого адаптера (СА) выступают в качестве физичес­кого интерфейса, или соединения, между компьютером и сетевым кабелем. Платы вставляются в слоты расширения материнской пла­ты всех сетевых компьютеров и серверов или интегрируются на ма­теринскую плату. Для обеспечения физического соединения между компьютером и сетью к разъему платы подключается сетевой кабель.

Плата СА выполняет:

• подготовку данных, поступающих от компьютера, к передаче по
сетевому кабелю;

• передачу данных другому компьютеру;


• управление потоком данных между компьютером и кабельной
системой;

• прием данных из кабеля и перевод их в форму, понятную ЦП
компьютера.

Плата СА должна также указать свое местонахождение или се-тевой адрес, чтобы ее могли отличить от других плат сети. Сетевые адреса определены комитетом ШЕЕ (1п8111и1е оГ Е1ес1пса1 ап<3 Е1ес1гошс8 Еп^теегз, 1пс.), который закрепляет за каждым произво­дителем плат сетевого адаптера некоторый интервал адресов. Про­изводители зашивают эти адреса в микросхемы, поэтому каждый компьютер имеет свой уникальный номер, т.е. адрес в сети.

Перед тем, как послать данные по сети, плата СА проводит элек­тронный диалог с принимающей платой, в результате которого они устанавливают:

• максимальный размер блока передаваемых данных;

• объем данных, пересылаемых без подтверждения о получении;

• интервал между передачами блоков данных;

• интервал, в течение которого необходимо послать подтверждение;

• объем данных, который может принять плата без переполнения
буфера;

• скорость передачи.

Если новая (более сложная и быстрая) плата взаимодействует с устаревшей (медленной) платой, то они должны найти общую для них обеих скорость передачи. Схемы современных плат позволяют им приспособиться к низкой скорости старых плат. Каждая плата оповещает другую о своих параметрах, принимая чужие параметры и подстраиваясь к ним. После определения всех деталей начинается обмен данными.

Для правильной работы платы должны быть корректно установ­лены следующие параметры:

• номер прерывания (1КХЗ — т{егшр1 яиегу);

• базовый адрес порта;

• 1/О.Базовый адрес памяти;

• тип трансивера.

Для обеспечения совместимости компьютера и сети плата СА должна соответствовать внутренней структуре компьютера (архитек­туре шины данных) и иметь соответствующий соединитель, подхо­дящий к типу кабельной системы.


Например, плата, которая нормально работает в компьютере Арр1е Маст1о5Ь в сети с топологией шина, не будет работать в ком­пьютере 1ВМ в сети с топологией кольцо. Сеть топологии кольцо требует плату, которая физически отличается от применяемой в сети топологии шина, к тому же Арр1е использует другой метод сетевого взаимодействия.

7,5, СетеВые стандарты

Работа сети заключается в передаче данных от одного компью­тера к другому. В этом процессе можно выделить следующие задачи:

1. Распознавание данных.

2. Разбиение данных на управляемые блоки.

3. Добавление информации к каждому блоку о местонахождении
данных и получателе.

4. Добавление информации для синхронизации и проверки оши­
бок.

5. Перемещение данных в сеть и отправка их по заданному адресу.
Сетевая ОС при выполнении этих задач строго следует опреде­
ленному набору процедур. Эти процедуры называются протоколами.
Они регламентируют каждую сетевую операцию. Стандартные про­
токолы позволяют программному и аппаратному обеспечению раз­
ных производителей нормально взаимодействовать.

Существует два главных набора стандартов: эталонная модель О51 и ее модификация Рго]ес1 802. Для понимания технической сто­роны функционирования сетей необходимо иметь представление об этих моделях.

7,5,1, Эталонной моЗель О/1

В 1978 г. 18О (1п1егпа1:юпа1 81апс1агс18 Ог^ашгаНоп) выпустила на­бор спецификаций, описывающих модель взаимодействия открытых систем, т.е. систем, доступных для связи с другими системами. Это был первый шаг к международной стандартизации протоколов. Все системы могли теперь использовать одинаковые протоколы и стан­дарты для обмена информацией.

В 1984 г. 18О выпустила новую версию своей модели, названную


эталонной моделью взаимодействия открытых систем 18О. Эта вер­сия стала международным стандартом. Ее спецификации использу­ют производители при разработке сетевых продуктов, ее придержи­ваются при построении сетей. Полностью модель носит название 18О О81 (Ореп 8у81ет 1п1егсоппес!;юп ЯеГегепсе Мос1е1). Для краткости будем ее называть модель О51. Модель О51 не является сетевой архи­тектурой, так как не описывает службы и протоколы, используемые на каждом уровне. Она просто определяет, что должен делать каж­дый уровень. Важно также понимать, что эталонная модель не явля­ется чем-то реальным, таким, что обеспечивает связь. Сама по себе она не заставляет коммуникации функционировать и служит лишь для классификации. Она классифицирует то, что непосредственно работает, а именно — протоколы. Протоколом считается набор спе­цификаций, определяющих реализацию одного или нескольких уров­ней О81. 18О разработала также стандарты для каждого уровня, хотя эти стандарты не входят в саму эталонную модель. Каждый из них был опубликован как отдельный международный стандарт.

Модель О81 имеет семь уровней. Каждому уровню соответствуют различные сетевые операции, оборудование и протоколы. Появление именно семи уровней было обусловлено функциональными особен­ностями модели.

Модель О81 без физического носителя показана на рис. 7.5.

Определенные сетевые функции, выполняемые на каждом уров­не, взаимодействуют только с функциями соседних уровней — вы­шестоящего и нижележащего. Например, Сеансовый уровень должен взаимодействовать только с Представительским и Транспортным уров­нями. Все эти функции подробно описаны.

Каждый уровень выполняет несколько операций при подготов­ке данных для доставки по сети на другой компьютер. Уровни отде­ляются друг от друга границами — интерфейсами. Все запросы от одного уровня к другому передаются через интерфейс. Каждый уро­вень, выполняя свои функции, пользуется услугами нижележащего уровня. Самые нижние уровни — 1-й и 2-й — определяют физичес­кую среду при передаче битов данных через плату СА и кабель. Са­мые верхние уровни определяют, каким способом реализуется дос­туп приложений к услугам связи.

Задача каждого уровня — предоставление услуг вышележащему уровню, маскируя при этом детали реализации этих услуг. Каждый


Прикладной

—г-

Уровень представления


Прикладной протокол

Протокол уровня представления


Прикладной

—*—

Уровень представления


 


т

Сеансовый

Интерфейс

Транспортный


Сеансовый протокол

Транспортный протокол Внутренний протокол подсети


Сеансовый

Транспортный


 



Сетевой

т

Передачи данных

Интерфейс

Физический

Хост А


 

Сетевой

Сетевой

Передачи данных

Передачи данных

Физический

Физический

Маршрутизатор Маршрутизатор


-


Сетевой

 

Передачи данных

Физический

Хост В


Протоколы хост-маршрутизатор сетевого, передачи данных и физического уровней

Рис. 7.5. Эталонная модель О81

уровень на компьютере-отправителе работает так, как будто он напрямую связан с соответствующим уровнем на компьютере-полу­чателе. Эта виртуальная связь показана на рис. 7.5 пунктирными ли­ниями. В действительности же связь осуществляется между соседни­ми уровнями одного компьютера. ПО каждого уровня реализует определенные сетевые функции в соответствии с набором прото­колов.

Перед отправкой в сеть данные разбиваются на пакеты, переда­ваемые между устройствами сети как единое целое. Пакет проходит


12. Информатика



последовательно все уровни ПО от прикладного до физического, при этом на каждом уровне к пакету добавляется форматирующая или адресная информация, необходимая для безошибочной передачи дан­ных по сети.

На принимающей стороне пакет также проходит через все уров­ни, но в обратном порядке. ПО каждого уровня анализирует инфор­мацию пакета, удаляет ту информацию, которая добавлена к пакету на, таком же уровне отправителем, и передает пакет следующему уровню. По достижении пакетом Прикладного уровня вся служебная информация будет удалена, и данные примут свой первоначальный вид.

Таким образом, только Физический уровень модели может не­посредственно послать информацию соответствующему уровню дру­гого компьютера. Информация на компьютере-отправителе и ком­пьютере-получателе должна пройти все уровни, начиная с того, с которого она посылается, и заканчивая соответствующим уровнем того компьютера, которым она принимается. Например, если Сете­вой уровень передает информацию с компьютера А, она спускается через Канальный и Физический уровни в сетевой кабель, затем по­падает в компьютер В, где поднимается через Физический и Каналь­ный уровни и достигает Сетевого уровня. В среде клиент-сервер при­мером такой информации служит адрес и результат контроля ошибок, добавленные к пакету.

Взаимодействие смежных уровней осуществляется через интер­фейс. Интерфейс определяет услуги, которые нижний уровень пре­доставляет верхнему, и способ доступа к ним.

Рассмотрим каждый из семи уровней модели О81 и услуги, ко­торые они предоставляют смежным уровням.

Прикладной (АррИсаПоп) уровень. Уровень 7. Он представляет собой окно для доступа прикладных процессов к сетевым услугам. Услуги, которые он обеспечивает, напрямую поддерживают приложения пользователя. Прикладной уровень управляет общим доступом к сети, потоком данных и восстановлением данных после сбоев связи.

Уровень представления (РгезепШюп). Уровень 6. Представитель­ский уровень определяет формат, используемый для обмена данны­ми между сетевыми компьютерами. Типичный пример работы служб Представительского уровня — кодирование передаваемых данных определенным стандартным образом. Уровень представления отвечает


за преобразование протоколов, трансляцию и шифрование данных, смену кодовой таблицы и расширение графических команд. Кроме того, он управляет сжатием данных для уменьшения объема переда­ваемых бит.

Сеансовый уровень (Зешоп). Уровень 5. Сеансовый уровень позво­ляет двум приложениям разных компьютеров устанавливать, исполь­зовать и завершать соединение, называемое сеансом. Сеанс может предоставлять еще и расширенный набор услуг, полезный для неко­торых приложений. Сеансовый уровень управляет диалогом между взаимодействующими процессами, устанавливая, какая из сторон, когда, как долго и т.д. должна осуществлять передачу.

Транспортный уровень (ТгатроМ). Уровень 4. Основная функция Транспортного уровня — принять данные от Сеансового уровня, раз­бить их при необходимости на небольшие части и передать Сетево­му уровню, гарантируя, что эти части в правильном порядке прибу­дут по назначению. Все это должно быть сделано эффективно и так, чтобы изолировать более высокие уровни от каких-либо изменений в аппаратной технологии. Транспортный уровень также следит за созданием и удалением сетевых соединений, управляет потоком со­общений, проверяет ошибки и участвует в решении задач, связан­ных с отправкой и получением пакетов. Примеры протоколов транс­портного уровня — ТСР и 8РХ.

Сетевой уровень (НеРногЬ). Уровень 3. Сетевой уровень управля­ет операциями подсети. Он отвечает за адресацию сообщений и пе­ревод логических адресов и имен в физические. Сетевой уровень раз­решает также проблемы, связанные с разными способами адресации и разными протоколами при переходе пакетов из одной сети в дру­гую, позволяя объединять разнородные сети. Примеры протоколов сетевого уровня — 1Р и 1РХ.

Уровень передачи данных или канальный (Оа1а Ьт/с). Уровень 2. Основная задача Канального уровня — преобразовать способность Физического уровня передавать данные в надежную линию связи, свободную от необнаруженных ошибок с точки зрения вышестоящего Сетевого уровня. Эту задачу Канальный уровень выполняет при по­мощи разбиения входных данных на кадры размером от нескольких сот до нескольких тысяч байтов. Каждый следующий кадр данных передается только после получения и обработки кадра подтвержде­ния, посылаемого обратно получателем. Кадр — это логически орга-


низованная структура, в которую можно помещать данные. На рис. 7.6 представлен простой кадр данных, где идентификатор отправи­теля — адрес компьютера-отправителя, а идентификатор получателя — адрес компьютера-получателя. Управляющая информация исполь­зуется для маршрутизации, указания типа пакета и сегментации. СКС (СусНса! КесШпбапсу СЬесК — циклический код) позволяет выявить ошибки и гарантирует правильный прием информации.


Идентификатор получателя


Управляющая информация


      Данные  


Идентификатор отправителя


Циклический код


Рис. 7.6. Кадр данных

Физический уровень (РНужа1). Уровень 1. Физический уровень осу­ществляет передачу неструктурированного, сырого, потока бит по физической среде (например, по сетевому кабелю). На этом уровне реализуются электрический, оптический, механический и функцио­нальный интерфейсы с кабелем. Физический уровень также форми­рует сигналы, которые переносят данные, поступившие ото всех вы­шележащих уровней. На этом уровне определяется способ соединения сетевого кабеля с платой СА и способ передачи сигналов по сетевому кабелю. Физический уровень отвечает за кодирование данных и син­хронизацию бит, гарантируя, что переданная единица будет воспри­нята именно как единица, а не как ноль. Уровень устанавливает дли­тельность каждого бита и способ перевода в электрические или оптические импульсы, передаваемые по сетевому кабелю.


7,5,2, Стандарт 1ЕЕЕ РгсуесЬ 802

Два нижних уровня модели О81 относятся к оборудованию, а именно: сетевой плате и кабелю. Для постановки более четких тре­бований к аппаратуре, которая работает на этих уровнях, ШЕЕ раз­работал расширения, предназначенные для разных сетевых плат и ка­белей. Эти расширения широко известны как Рго]ес1 802, названные в соответствии с годом (1980) и месяцем (февраль) своего издания. Стандарты ШЕЕ были опубликованы раньше модели О81, но оба проекта разрабатывались примерно в одно время и при полном об­мене информацией. Это и привело к созданию двух совместимых продуктов.

Рго)ес1 802 установил стандарты для физических компонентов сети — интерфейсных плат и кабельной системы, которые работают на Канальном и Физическом уровнях модели О81. Эти стандарты, называемые 802-спецификациями, распространяются на платы СА, компоненты ГВС, компоненты сетей, использующих коаксиальный кабель и витую пару. 802-спецификации определяют способы, в со­ответствии с которыми платы СА осуществляют доступ к физичес­кой среде и передают по ней данные. Это соединение, поддержка и разъединение сетевых устройств. Выбор протокола канального уров­ня — наиболее важное решение при проектировании ЛВС. Этот про­токол определяет скорость сети, метод доступа к физической среде, тип кабелей, сетевые платы и драйверы.

Стандарты ЛВС, определенные Рго^ес^ 802, делятся на 16 кате­горий, каждая из которых имеет свой номер (от 802.1 до 801.16, на­пример, 802.6 сеть масштаба города, МА1Ч; 802.10 — безопасность сетей; 802.11 — беспроводные сети).

Два нижних уровня модели, Канальный и Физический, устанав­ливают, каким образом несколько компьютеров могут одновремен­но, не мешая друг другу, использовать сеть. ШЕЕ Рго]ес1 802 пред­назначен именно для этих двух уровней. На рис.7.7 показаны Канальный уровень и два его подуровня.

Подуровень Управление логической связью (Ьо&са1 ЫпЬ Соп1го1, ЫС) устанавливает и разрывает канал связи, управляет потоком дан­ных, производит упорядочение и вырабатывает подтверждение при­ема кадров.

Подуровень Управление доступом к среде (МесНа Ассем СоШго1,


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.033 сек.)