|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Пример 6.8Задано 20 чисел. Сколько среди них чисел, больших 10? Псевдокод: 1. К = 0 {Счетчик чисел, больших 10}. 2. Повторить 20 раз (для / = 1, 20, 1).
2.1. Ввод числа х. 2.2. Если х> 10, то К = К+ 1.
3. Вывод К. 4. Конец. Блок-схема алгоритма приведена на рис. 6.13. Замечание: в фигурных скобках {....} принято помещать комментарии к алгоритму.
Начало
Рис. 6.13. Алгоритм примера 6.8 В каждом из рассмотренных выше примеров использовалась одна циклическая конструкция. В реальных задачах может встретиться любое число циклов. Обозначив цикл квадратной скобкой, схематично представим варианты взаимного расположения циклов (рис. 6.14). а — последовательные б — вложенные в — запрещенные Рис. 6.14. Расположение циклов Алгоритм любой задачи может быть представлен как комбинация представленных выше элементарных алгоритмических структур, поэтому данные конструкции: линейную, ветвящуюся и циклическую, называют базовыми. 6,3.4. Рекурсивный алгоритм Рекурсивным называется алгоритм, организованный таким образом, что в процессе выполнения команд на каком-либо шаге он прямо или косвенно обращается сам к себе. 6.4. Простые типы Заннын: переменные и константы Реальные данные, которые обрабатывает программа, — это целые и вещественные числа, символы и логические величины. Эти простые типы данных называют базовыми. Все данные, обрабатываемые компьютером, хранятся в ячейках памяти компьютера, каждая из которых имеет свой адрес. Для того чтобы не следить за тем, по какому адресу будут записаны те или иные данные, в языках программирования используется понятие переменной, позволяющее отвлечься от адреса ячейки памяти и обращаться к ней с помощью имени (идентификатора). Переменная — есть именованный объект (ячейка памяти), который может изменять свое значение. Имя переменной указывает на значение, а способ ее хранения и адрес остаются скрытыми от программиста. Кроме имени и значения, переменная имеет тип, определяющий, какая информация находится в памяти. Тип переменной задает: • используемый способ записи информации в ячейки памяти; • необходимый объем памяти для ее хранения. Объем памяти для каждого типа определяется таким образом, чтобы в него можно было поместить любое значение из допустимого диапазона значений данного типа. Например, тип «байт» может принимать значения от 0 до 255, что в двоичном коде (255(10) = = 11111111(2) соответствует ячейке памяти длиной в 8 бит (или 1 байт). В описанных выше алгоритмах (примеры 6.1 — 6.8) все данные хранятся в виде переменных. Например, инструкция «Ввод двух чисел я, Ь» означает введение пользователем значений двух переменных, а инструкция «К=К+1» означает увеличение значения переменной К на единицу. Если переменные присутствуют в программе, на протяжении всего времени ее работы — их называют статическими. Переменные, создающиеся и уничтожающиеся на разных этапах выполнения программы, называют динамическими. Все остальные данные в программе, значения которых не изменяются на протяжении ее работы, называют константами или постоянными. Константы, как и переменные, имеют тип. Их можно указывать явно, например, в инструкции «К = К + 1» 1 есть константа, или для удобства обозначать идентификаторами: рг = 3,1415926536. Только значение р1 нельзя изменить, так как это константа, а не переменная. 6,5. Структурированные Зонные и алгоритмы ин обработки Для повышения производительности и качества работы необходимо иметь данные, максимально приближенные к реальным аналогам. Тип данных, позволяющий хранить вместе под одним именем несколько переменных, называется структурированным. Каждый язык программирования имеет свои структурированные типы. Рассмотрим структуру, объединяющую элементы одного типа данных, — массив. Массивом называется упорядоченная совокупность однотипных величин, имеющих общее имя, элементы которой адресуются (различаются) порядковыми номерами (индексами). В качестве иллюстрации можно представить шкаф, содержащий множество пронумерованных ящиков (совокупность — «Ящик № 1», «Ящик № 2», «Ящик № 3» и т.д.; «Ящик» — общее имя всех ее элементов). Доступ к содержимому конкретного ящика (элементу массива) осуществляется после выбора ящика по его номеру (индексу). Элементы массива в памяти компьютера хранятся по соседству, одиночные элементы простого типа такого расположения данных в памяти не предполагают. Массивы различаются количеством индексов, определяющих их элементы. Одномерный массив (шкаф ящиков в один ряд) предполагает наличие у каждого элемента только одного индекса. Примерами одномерных массивов служат арифметическая (а) и геометрическая (Ь) последовательности, определяющие конечные ряды чисел. Количество элементов массива называют размерностью. При определении одномерного массива его размерность записывается в круглых скобках, рядом с его именем. Например, если сказано: «задан массив А(10)», это означает, что даны элементы: я;, я2,..., аш. Рассмотрим алгоритмы обработки элементов одномерных массивов. Ввод элементов одномерного массива осуществляется поэлементно, в порядке, необходимом для решения конкретной задачи. Обычно, когда требуется ввести весь массив, порядок ввода элементов не важен, и элементы вводятся в порядке возрастания их индексов. Алгоритм ввода элементов массива А(10) представлен на рис. 6.15. Псевдокод: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |