|
||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Системное программное обеспечение. Между отдельными программами математического или программного обеспечения (ПО) компьютерной системыМежду отдельными программами математического или программного обеспечения (ПО) компьютерной системы, как и между ее узлами и блоками, существует тесная взаимосвязь. Такая взаимосвязь обеспечивается распределением ПО между несколькими взаимодействующими уровнями. Каждый вышележащий уровень, опираясь на программное обеспечение нижележащих уровней, повышает функциональность всей системы. Взаимосвязь между уровнями и программами системного ПО можно представить с помощью схемы (рис. 3.1). Эта схема составлена по аналогии со структурной схемой программного обеспечения всей компьютерной системы, рассмотренной в главе 1.
Рис. 3.1. Уровни и программы системного программного обеспечения Базовое ПО в архитектуре компьютера занимает особое положение. С одной стороны, его можно рассматривать как составную часть аппаратных средств, с другой стороны, оно является одним из программных модулей операционной системы. Основу системного ПО составляют программы, входящие в операционные системы (ОС) компьютеров. Задача таких программ — управление работой всех устройств компьютерной системы и организация взаимодействия отдельных процессов, протекающих в компьютере во время выполнения программ. Сюда относятся и программы, обеспечивающие отображение информации на дисплее в удобном для пользователя виде, диалоговые программы для общения на ограниченном естественном языке, а также системы трансляции, переводящие на машинный язык программы, написанные на языках программирования. Другой комплекс программ — служебные. Это различные сервисные программы, используемые при работе или техническом обслуживании компьютера, — редакторы, отладчики, диагностические программы, архиваторы, программы для борьбы с вирусами и другие вспомогательные программы. Данные программы облегчают пользователю взаимодействие с компьютером. К ним примыкают программы, обеспечивающие работу компьютеров в сети. Они реализуют сетевые протоколы обмена информацией между машинами, работу с распределенными базами данных, телеобработку информации. Вся совокупность программ, образующих ту программную среду, в которой работает компьютер и называется системным программным обеспечением. И чем богаче системное ПО, тем продуктивнее становится работа на компьютере. Однако в программную среду, наряду с полезными, могут входить и программы, нарушающие ее работу. Это различные программы для несанкционированного доступа к данным и программам, компьютерные вирусы и другие программные средства, с помощью которых «взламывается» защита программной среды. Рассмотрим более подробно программы, входящие в системное программное обеспечение компьютера. 3,1, БазоВое программное обеспечение Базовое ПО, или ВЮ5, представляет программа, которая отвечает за управление всеми компонентами, установленными на материнской плате. Фактически ВЮ8 является неотъемлемой составляющей системной платы и поэтому может быть отнесена к особой категории компьютерных компонентов, занимающих промежуточное положение между аппаратурой и программным обеспечением. Аббревиатура ВЮ8 расшифровывается как Важ 1при1/ОшрШ 8у$1ет — базовая система ввода/вывода. Раньше в системе 1ВМ РС основным назначением ВЮ8 была поддержка функций ввода-вывода за счет предоставления ОС интерфейса для взаимодействия с аппаратурой. В последнее время ее назначение и функции значительно расширились. Второй важной функцией ВЮ8 является процедура тестирования (Р08Т — Ро^ег Оп 8е1Г Те8{) всего установленного на материнской плате оборудования (за исключением дополнительных плат расширения), проводимая после каждого включения компьютера. В процедуру тестирования входят: • проверка работоспособности системы управления электро • инициализация системных ресурсов и регистров микросхем; • тестирование оперативной памяти; • подключение клавиатуры; • тестирование портов; • инициализация контроллеров, определение и подключение же В процессе инициализации и тестирования оборудования ВЮ8 сравнивает данные системной конфигурации с информацией, хранящейся в СМО8 — специальной энергозависимой памяти, расположенной на системной плате. Хранение данных в СМО8 поддерживается специальной батарейкой, а информация обновляется всякий раз при изменении каких-либо настроек ВЮ8. Именно эта память хранит последние сведения о системных компонентах, текущую дату и время, а также пароль на вход в ВЮ8 или загрузку операционной системы (если он установлен). При выходе из строя, повреждении или удалении батарейки все данные в СМО8-памяти обнуляются. Третьей важной функцией, которую В1О8 выполняет со времен 1ВМ РС, является загрузка ОС. Современные ВЮ8 позволяют загружать операционную систему не только с гибкого или жесткого диска, но и с приводов СО-КОМ, 21Р, Ь8-120, 8С81-контроллеров. Определив тип устройства загрузки, ВЮ8 приступает к поиску программы — загрузчика ОС на носителе или переадресует запрос на загрузку на ВЮ8 другого устройства. Когда ответ получен, программа загрузки помещается в оперативную память, откуда и происходит загрузка системной конфигурации и драйверов устройств операционной системы. С появлением процессоров Реп1шт ВЮ8 стала выполнять еще одну функцию — управление потребляемой мощностью, а с появлением материнских плат форм-фактора (стандартизированный размер) АТХ (Аёуапсес! Тес1то1оёу еХ*епс1ес1 — расширенная продвинутая технология) — и функцию включения и выключения источника питания в соответствии со спецификацией АСР1 (Айуапсес! Сопй^и-гаНоп апс! Ро\уег 1п1егГасе — продвинутый интерфейс конфигурирования и управления потребляемой мощностью). Существует также спецификация АРМ (Айуапсес! Ро\уег Мапа§етеп1 — продвинутое управление потребляемой мощностью). Отличие их состоит в том, что АСР1 выполняется в основном средствами ОС, а АРМ — средствами ВЮ8. Фирм, занимающихся разработкой программного обеспечения для ВЮ8, очень мало. Из наиболее известных можно выделить три: А\уагй 8ой\уаге (Адуагс! ВЮ8), Атепсап Ме§а1гепс18, 1пс. (АМ1 ВЮ8) и Мюгок! КезеагсЬ (МП ВЮ8). Но на подавляющем большинстве компьютеров сегодня применяются различные версии ВЮ8 компании А\уагс1 8ой\уаге. Пользовательский интерфейс разных версий и разных производителей ВЮ8 может сильно отличаться, но системные вызовы строго стандартизированы. Физически ВЮ8 находится в энергонезависимой перепрограммируемой флэш-памяти, которая вставляется в специальную колодку на материнской плате (на этой микросхеме есть яркая голографичес-кая наклейка с логотипом фирмы — разработчика ПО для ВЮ8). 3.2, Операиионные системы 3,2.1, Назначение олераиионной системы Место операционной системы в структуре аппаратно-программных средств (АПС) компьютера показано на рис. 3.2. Нижний уровень структуры составляют интегральные микросхемы, источники питания, дисководы и другие физические устройства.
Рис. 3.2. Структура аппаратно-программных средств компьютера Выше расположен уровень, на котором физические устройства рассматриваются с точки зрения функционально-логических связей. На этом уровне находятся внутренние регистры центрального процессора (ЦП) и арифметическо-логическое устройство (АЛУ). Операции над данными выполняются в соответствии с тактовой частотой ЦП. В некоторых машинах эти операции осуществляются под управлением специальных средств, называемых микропрограммами. В других — с помощью аппаратуры. Некоторые операции выполняются за один такт работы ЦП, другие требуют нескольких тактов. Все операции составляют систему команд машины, а все данные имеют абсолютные значения адресов, по которым они хранятся в памяти. Система команд компьютера образует машинный язык. Машинный язык содержит от 50 до 300 команд, по которым осуществляются преобразование, модификация и перемещения данных между устройствами. Управление устройствами на этом уровне осуществляется с помощью загрузки определенных данных в специальные регистры устройств. Например, при программировании ввода/вывода диску можно дать команду чтения, записав в его регистры адрес места на диске, адрес в основной памяти, число байтов для чтения и направление действия (чтение или запись). В действительности диску следует передавать большее количество параметров, а структура операции, возвращаемой диском, достаточно сложна. При этом очень важную роль играют временные соотношения. Операционная система предназначена для того, чтобы скрыть от пользователя все эти сложности. Этот уровень АПС (рис. 3.2) является программным обеспечением, управляющим всеми электронными компонентами компьютера, распределяющим его ресурсы, организующим вычислительный процесс и предоставляющим пользователю удобный интерфейс, избавляющий его от необходимости непосредственного общения с аппаратурой. Действие чтения файла в этом случае становится намного более простым, чем когда нужно заботиться о перемещении головок диска, ждать, пока они установятся на нужное место, и т. д. Над ОС в структуре аппаратно-программных средств компьютера расположены остальные системные программы. Здесь находятся интерпретатор команд, системы окон, компиляторы и редакторы кода. Компиляторы — это ПО, переводящее программу с языка программирования высокого уровня на машинный язык. После этого программа записывается в ОЗУ и затем выполняется. Интерпретаторы — это ПО, переводящее операторы программы на машинный язык по очереди и немедленно выполняющее их. Очень важно понимать, что такие программы не являются частью ОС. Под операционной системой обычно понимается то программное обеспечение, которое запускается в режиме ядра и защищается от вмешательства пользователя с помощью аппаратных средств. А компиляторы и редакторы запускаются в пользовательском режиме. Если пользователю не нравится какой-либо компилятор, он может выбрать другой или написать свой собственный, но он не может написать свой собственный обработчик прерываний, являющийся частью операционной системы и защищенный аппаратно от попыток его модифицировать. Во многих ОС есть программы, которые работают в пользовательском режиме. Они помогают операционной системе выполнять специализированные функции. Например, программы, позволяющие пользователям изменять свои пароли. Эти программы не являются частью ОС и запускаются не в режиме ядра, но выполняемые ими функции влияют на работу системы. Такие программы также защищаются от воздействия пользователя. И, наконец, над системными программами (рис. 3.2) расположены прикладные программы. Обычно они покупаются или пишутся пользователем для решения собственных задач — обработки текста, работы с графикой, технических расчетов или создания системы управления базой данных. Операционные системы выполняют две основные функции — расширение возможностей машины и управление ее ресурсами. Как уже упоминалось, архитектура (система команд, организация памяти, ввод/вывод данных и структура шин) компьютера на уровне машинного языка неудобна для работы с программами, особенно при вводе/выводе данных. Так, процедура ввода/вывода данных с гибкого диска выполняется через микросхемы контроллера. Контроллер имеет 16 команд. Каждая задается передачей от 1 до 9 байт в регистр устройства. Это команды чтения и записи данных, перемещения головки диска, форматирования дорожек, инициализации, распознавания, установки в исходное положение и калибровки контроллера и приводов. Основные команды геад, и ^гИе (чтение и запись). Каждая из них требует 13 параметров, которые определяют адрес блока на диске, количество секторов на дорожке, физический режим записи, расстановку промежутков между секторами. Программист при работе с гибким диском должен также постоянно знать, включен двигатель или нет. Если двигатель выключен, его следует включить прежде, чем данные будут прочитаны или записаны. Двигатель не может оставаться включенным слишком долго, так как гибкий диск изнашивается. Поэтому программист вынужден выбирать между длинными задержками во время загрузки и изнашивающимися гибкими дисками. Отсюда ясно, что обыкновенный пользователь не захочет сталкиваться с такими трудностями во время работы с дискетой или жестким диском, процедуры управления которым еще сложнее. Ему нужны простые высокоуровневые операции. В случае работы с дисками типичной операцией является выбор файла из списка файлов, содержащихся на диске. Каждый файл может быть открыт для чтения или записи, прочитан или записан, а потом закрыт. А детали этих операций должны быть скрыты от пользователя. Программа, скрывающая истину об аппаратном обеспечении и представляющая простой список файлов, которые можно читать и записывать, называется операционной системой. Операционная система не только устраняет необходимость работы непосредственно с дисками и предоставляет простой, ориентированный на работу с файлами интерфейс, но и скрывает множество неприятной работы с прерываниями, счетчиками времени, организацией памяти и другими низкоуровневыми элементами. В каждом случае процедура, предлагаемая ОС, намного проще и удобнее в обращении, чем те действия, которые требует выполнить основное оборудование. С точки зрения пользователя ОС выполняет функцию виртуальной машины, с которой проще и легче работать, чем непосредственно с аппаратным обеспечением, составляющим реальный компьютер. А для программ ОС предоставляет ряд возможностей, которые они могут использовать с помощью специальных команд, называемых системными вызовами. Концепция, рассматривающая ОС прежде всего как удобный интерфейс пользователя, — это взгляд сверху вниз. Альтернативный взгляд снизу вверх дает представление об ОС как о механизме управления всеми частями компьютера. Современные компьютеры состоят из процессоров, памяти, дисков, сетевого оборудования, принтеров и огромного количества других устройств. В соответствии со вторым подходом работа ОС заключается в обеспечении организованного и контролируемого распределения процессоров, памяти и устройств ввода/вывода между различными программами, состязающимися за право их использовать. 3,2,2, ВиЭы олераиионнык систем История развития ОС насчитывает уже много лет. Операционные системы появились и развивались в процессе совершенствования аппаратного обеспечения компьютеров, поэтому эти события исторически тесно связаны. Развитие компьютеров привело к появлению огромного количества различных ОС, из которых далеко не все Щироко известны. На самом верхнем уровне находятся ОС для мэйнфреймов. Эти огромные машины еще можно встретить в больших организациях. Мэйнфреймы отличаются от персональных компьютеров по своим возможностям ввода/вывода. Довольно часто встречаются мэйнфреймы с тысячью дисков и терабайтами данных. Мэйнфреймы выступают в виде мощных \уеЬ-серверов и серверов крупных предприятий и корпораций. Операционные системы для мэйнфреймов в основном ориентированы на обработку множества одновременных заданий, большинству из которых требуется огромное количество опе- раций ввода-вывода. Обычно они выполняют три вида операций: пакетную обработку, обработку транзакций (групповые операции) и разделение времени. При пакетной обработке выполняются стандартные задания пользователей, работающих в интерактивном режиме. Системы обработки транзакций управляют очень большим количеством запросов, например бронирование авиабилетов. Каждый отдельный запрос невелик, но система должна отвечать на сотни и тысячи запросов в секунду. Системы, работающие в режиме разделения времени, позволяют множеству удаленных пользователей одновременно выполнять свои задания на одной машине, например, работать с большой базой данных. Все эти функции тесно связаны между собой, и операционная система мэйнфрейма выполняет их все. Примером операционной системы для мэйнфрейма является ОЗ/390. Уровнем ниже находятся серверные ОС. Серверы представляют собой или многопроцессорные компьютеры, или даже мэйнфреймы. Эти ОС одновременно обслуживают множество пользователей и позволяют им делить между собой программно-аппаратные ресурсы. Серверы также предоставляют возможность работы с печатающими устройствами, файлами или 1п1егпе1. У 1п1егпе1-провайдеров обычно работают несколько серверов для того, чтобы поддерживать одновременный доступ к сети множества клиентов. На серверах хранятся страницы \уеЪ-сайтов и обрабатываются входящие запросы. 1Ж1Х и \Утс1оте 2000 являются типичными серверными ОС. Теперь для этой цели стала использоваться и операционная система 1лпих. Следующую категорию составляют ОС для персональных компьютеров. Их работа заключается в предоставлении удобного интерфейса для одного пользователя. Такие системы широко используются в повседневной работе. Основными ОС в этой категории являются операционные системы платформы ^тс!о\У5, Цпих и операционная система компьютера Маст(озЬ. Еще один вид ОС — это системы реального времени. Главным параметром таких систем является время. Например, в системах управления производством компьютеры, работающие в режиме реального времени, собирают данные о промышленном процессе и используют их для управления оборудованием. Такие процессы должны удовлетворять жестким временным требованиям. Если, например, по конвейеру передвигается автомобиль, то каждое действие должно быть осуществлено в строго определенный момент времени. Если сварочный робот сварит шов слишком рано или слишком поздно, то нанесет непоправимый вред изделию. Системы Ух^огКз и ()КХ являются операционными системами реального времени. Встроенные операционные системы используются в карманных компьютерах и бытовой технике. Карманный компьютер — это маленький компьютер, помещающийся в кармане и выполняющий небольшой набор функций, например, телефонной книжки и блокнота. Встроенные системы, управляющие работой устройств бытовой техники, не считаются компьютерами, но обладают теми же характеристиками, что и системы реального времени, и при этом имеют особые размер, память и ограничения мощности, что выделяет их в отдельный класс. Примерами таких операционных систем являются Ра1тО8 и \ЭДпс1о\У8 СЕ (Сошитег Е1ес*гошс8 — бытовая техника). Самые маленькие операционные системы работают на смарт-картах, представляющих собой устройство размером с кредитную карту и содержащих центральный процессор. На такие операционные системы накладываются очень жесткие ограничения по мощности процессора и памяти. Некоторые из них могут управлять только одной операцией, например электронным платежом, но другие ОС выполняют более сложные функции. 3,2.3. БозоВые понятия опероиионнык систем Для операционных систем существует набор базовых понятий, таких как процессы, память и файлы, которые являются самыми важными для понимания общей идеи построения и функционирования ОС. Ключевое понятие ОС — процесс. Процессом называют программу в момент ее выполнения. С каждым процессом связывается его адресное пространство — список адресов в памяти от некоторого минимума до некоторого максимума. По этим адресам процесс может занести информацию и прочесть ее. Адресное пространство содержит саму программу, данные к ней и ее стек. Со всяким процессом связывается некий набор регистров, включая счетчик команд, указатель стека и другие аппаратные ресурсы, а также вся информация, необходимая для запуска программы. Чтобы лучше разобраться в понятии процесса, проведем аналогию с системой, работающей в режиме разделения времени. Предположим, ОС решает остановить работу одного процесса и запустить другой, потому что первый израсходовал отведенную для него часть рабочего времени ЦП. Позже остановленный процесс должен быть запущен снова из того же состояния, в каком его остановили. Следовательно, всю информацию о процессе нужно где-либо сохранить. Так, процесс может иметь несколько одновременно открытых для чтения файлов. Связанный с каждым файлом указатель дает текущую позицию, т.е. номер байта или записи, которые будут прочитаны после повторного запуска процесса. При временном прекращении действия процесса все указатели нужно сохранить так, чтобы команда чтения, выполненная после возобновления процесса, прочла правильные данные. Во многих ОС вся информация о каждом процессе хранится в таблице операционной системы. Эта таблица называется таблицей процессов и представляет собой связанный список структур, по одной на каждый существующий в данный момент процесс. В каждом компьютере есть оперативная память, используемая для хранения исполняемых программ. В простых ОС в конкретный момент времени в памяти может находиться только одна программа. Более сложные системы позволяют одновременно хранить в памяти несколько программ. Для того чтобы они не мешали друг другу, необходим защитный механизм. Этот механизм управляется операционной системой. Другой важный, связанный с памятью вопрос — управление адресным пространством процессов. Обычно под каждый процесс отводится некоторое множество адресов, которые он может использовать. В простейшем случае, когда максимальная величина адресного пространства для процесса меньше оперативной памяти, процесс заполняет свое адресное пространство, и памяти хватает на то, чтобы содержать его целиком. Однако, что произойдет, если адресное пространство процесса окажется больше, чем ОЗУ компьютера, а процесс захочет использовать его целиком? В этом случае используется метод, называемый виртуальной памятью, при котором ОС хранит часть адресов в оперативной памяти, а часть на диске и меняет их местами при необходимости. Управление памятью — важная функция операционной системы. Файловая система — еще одно базовое понятие, поддерживаемое виртуально всеми ОС. Как было установлено, основной функцией операционной системы является маскирование особенностей работы дисков и других устройств и предоставление пользователю понятной и удобной абстрактной модели независимых от устройств файлов. Системные вызовы необходимы для создания, удаления, чтения или записи файлов. Перед тем как прочитать файл, его нужно разместить на диске и открыть, а после прочтения его нужно закрыть. Все эти функции осуществляют системные вызовы. При создании места для хранения файлов ОС использует понятие каталога как способ объединения файлов в группы. Например, студент может иметь по одному каталогу для каждого изучаемого им курса, каталог для электронной почты и каталог для своей домашней теЪ-страницы. Для создания и удаления каталога также необходимы системные вызовы. Они же обеспечивают перемещение существующего файла в каталог и удаление файла из каталога. Содержимое каталога могут составлять файлы или другие каталоги. Эта модель создает структуру — файловую систему. Иерархии процессов и файлов организованы в виде деревьев (рис. 3.3). Иерархия процессов обычно не очень глубока, в ней редко бывает больше трех уровней, тогда как файловая структура достаточно часто имеет четыре, пять и даже больше уровней в глубину. МЗОНчсе Р1 Рссе55 МетодМатер УчебМатер СаЬ М015ПК ТаЫез УсЬеЬгну С] Ехсе! 1е5Ехсе1 УсНеЬгму ЛабРаб
Рис. 3.3. Дерево каталогов Иерархия процессов обычно живет, как правило, несколько минут, иерархия каталогов может существовать годами. Каждый файл в иерархии каталогов можно определить, задав его имя пути, называемое также полным именем файла. Путь начинается из вершины структуры каталогов, называемой корневым каталогом. Такое абсолютное имя пути состоит из списка каталогов, которые нужно пройти от корневого каталога к файлу, с разделением отдельных компонентов. Отдельные компоненты в ОС 1ЖIX разделяются косой чертой /, а в М8-ОО8 и Щпёодуз — обратной косой чертой \. 3,2,4, Проиессы и потоки Основным понятием, связанным с операционными системами, является процесс — абстрактное понятие, описывающее работу программы. Все остальное базируется на этом понятии, поэтому очень важно, чтобы студенты получили полное представление о концепции процесса. Проиессы Все современные компьютеры могут выполнять одновременно несколько операций. Так, одновременно с запущенной пользователем программой может выполняться чтение с диска и вывод текста на экран монитора или на принтер. В многозадачной системе процессор переключается между программами, предоставляя каждой от десятков до сотен миллисекунд. При этом в каждый конкретный момент времени процессор занят только одной программой, но за секунду он успевает поработать с несколькими программами, создавая у пользователей иллюзию параллельной работы со всеми программами. Иногда в этом случае говорят о псевдопараллелизме, в отличие от настоящего параллелизма в многопроцессорных системах, содержащих несколько процессоров, разделяющих общую память между собой. Производители операционных систем разработали концептуальную модель последовательных процессов, упрощающую наблюдение за работой параллельно идущих процессов. Рассмотрим содержание и применение этой модели. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.013 сек.) |