АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Изменения белков

Читайте также:
  1. Абсолютные и относительные показатели изменения структуры
  2. Абсолютные и относительные показатели изменения структуры
  3. Активный центр белков и избирательность связывания его с лигандом
  4. Алгоритм изменения дозы варфарина при среднем уровне гипокоагуляции (МНО- 2,0-3,0)
  5. Алгоритм изменения дозы НФГ в зависимости от относительной величины АЧТВ (по отношению к контрольной величине конкретной лаборатории)
  6. Альтернативные издания. Изменения роли ведущих теле- и радиопередач.
  7. Аминокислотный состав белков
  8. Анализ изменения показателей их характеризующих
  9. Анализ факторов изменения объема реализации продукции
  10. Анализ факторов изменения точки безубыточности и зоны безопасности предприятия
  11. Белково-калорийная недостаточность
  12. Белковый обмен и белки пищи.

Белки относятся к основным химическим компонентам пищи. Они имеют и другое название — протеины, которое под-

Глава 4. Процессы, формирующие качество кулинарной продукции 53

черкивает первостепенное биологическое значение этой группы веществ (от гр. protos — первый, важнейший).

Значение белков в кулинарных рецептурах. Белки являются структурными элементами клеток; служат материалом для образования ферментов, гормонов и др.; влияют на усвояемость жиров, углеводов, витаминов, минеральных веществ и т. д. Ежесекундно в нашем организме отмирают миллионы клеток и для восстановления их взрослому человеку требуется 80—100 г белка в сутки, причем заменить его другими веществами невозможно. Поэтому технологи, занятые организацией питания постоянного контингента потребителей по дневным рационам (интернаты, санатории, больницы и т. д.) или скомплектованному меню отдельных приемов пищи, должны обеспечивать содержание белка в блюдах, соответствующее физиологическим потребностям человека.

Пользуясь таблицами химического состава готовых блюд, можно разработать меню рациона так, чтобы удовлетворить потребность питающихся в белках, как по количеству, так и по качеству, т. е. обеспечить биологическую ценность.

Биологическая ценность белков определяется содержанием незаменимых аминокислот (НАК), их соотношением и пере-вариваемостью. Белки, содержащие все НАК (их восемь: триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин, фенилаланин) и в тех соотношениях, в каких они входят в белки нашего организма, называются полноценными. К ним относятся белки мяса, рыбы, яиц, молока. В растительных белках, как правило, недостаточно лизина, метионина, триптофана и некоторых других НАК. Так, в гречневой крупе недостает лейцина, в рисе и пшене — лизина. Незаменимая аминокислота, которой меньше всего в данном белке, называется лимитирующей. Остальные аминокислоты усваиваются в адекватных с ней количествах. Один продукт может дополнять другой по содержанию аминокислот. Однако такое взаимное обогащение происходит только в том случае, если эти продукты.поступают в организм с разрывом во времени не более чем 2—3 ч. Поэтому большое значение имеет сбалансированность по аминокислотному составу не только суточных рационов, но и отдельных приемов пищи и даже блюд. Это необходимо учитывать при создании рецептур блюд и кулинарных изделий, сбалансированных по содержанию НАК.

Наиболее удачными комбинациями белковых продуктов являются:

5. Ковалев


Раздел I. Теоретические основы

* мука + творог (ватрушки, вареники, пироги с творогом);

* картофель + мясо, рыба или яйцо (картофельная запеканка с мясом, мясное рагу, рыбные котлеты с картофелем и др.);

* гречневая, овсяная каша + молоко, творог (крупеники, каши с молоком и др.);

* бобовые с яйцом, рыбой или мясом.

Наиболее эффективное взаимное обогащение белков достигается при их определенном соотношении, например:

* 5 частей мяса + 10 частей картофеля;

* 5 частей молока + 10 частей овощей;

* 5 частей рыбы + 10 частей овощей;

* 2 части яиц + 10 частей овощей (картофеля) и т. д. Усвояемость белков зависит от их физико-химических

свойств, способов и степени тепловой обработки продуктов. Например, белки многих растительных продуктов.плохо перевариваются, так как заключены в оболочки из клетчатки и других веществ, препятствующих действию пищеварительных ферментов (бобовые, крупы из цельных зерен, орехи и др.). Кроме того, в ряде растительных продуктов содержатся вещества, тормозящие действие пищеварительных ферментов (фазиолин фасоли).

По скорости переваривания на первом месте находятся белки яиц, молочных продуктов и рыбы, затем мяса (говядина, свинина, баранина) и, наконец, хлеба и крупы. Из белков животных продуктов в кишечнике всасывается более 90% аминокислот, из растительных — 60—80%.

Размягчение продуктов при тепловой обработке и протирание их улучшает усвояемость белков, особенно растительного происхождения. Однако при избыточном нагревании содержание НАК может уменьшиться. Так, при длительной тепловой обработке в ряде продуктов снижается количество доступного для усвоения лизина. Этим объясняется меньшая усвояемость белков каш, сваренных на молоке, по сравнению с белками каш, сваренных на воде, но подаваемых с молоком/ Чтобы повысить усвояемость каш, рекомендуется крупу предварительно замачивать для сокращения времени варки и добавлять молоко перед окончанием тепловой обработки.

Качество белка оценивается рядом показателей (КЭБ —• коэффициент эффективности белка, ЧУБ — чистая утилизация белка и др.), которые рассматривает физиология питания.

Химическая природа и строение белков. Белки — это природные полимеры, состоящие из остатков сотен и тысяч

Глава 4. Процессы, формирующие качество кулинарной продукции 55

аминокислот, соединенных пептидной связью. От набора аминокислот и их порядка в полипептидных цепях зависят индивидуальные свойства белков.

По форме молекулы все белки можно разделить на глобулярные и фибриллярные. Молекула глобулярных белков по форме близка к шару, а фибриллярных имеет форму волокна.

По растворимости все белки делятся на следующие группы:

* растворимые в воде — альбумины;

* растворимые в солевых растворах — глобулины;

* растворимые в спирте — проламины;

* растворимые в щелочах — глютелины.

По степени сложности белки делятся на протеины (простые белки), состоящие только из остатков аминокислот, и протеиды (сложные белки), состоящие из белковой и небелковой частей.

Различают четыре структуры организации белка:

* первичная — последовательное соединение аминокислотных остатков в полипептидной цепи;

* вторичная — закручивание полипептидных цепей в спирали;

* третичная — свертывание полипептидной цепи в глобулу;

* четвертичная — объединение нескольких частиц с третичной структурой в одну более крупную частицу.

Белки обладают свободными карбоксильными или кислотными и аминогруппами, в результате чего они амфотер-н ы, т. е. в зависимости от реакции среды проявляют себя как кислоты или как щелочи. В кислой среде белки проявляют щелочные свойства, и частицы их приобретают положительные заряды, в щелочной они ведут себя как кислоты, и частицы их становятся отрицательно заряженными.

При определенном рН среды (изоэлектрическая точка) число положительных и отрицательных зарядов в молекуле белка одинаково. Белки в этой точке электронейтральны, а их вязкость и растворимость наименьшие. Для большинства белков изоэлектрическая точка лежит в слабокислой среде.

Наиболее важными технологическими свойствами белков являются: гидратация (набухание в воде), денатурация, способность образовывать пены, деструкция и др.

Гидратация и дегидратация белков. Гидратацией называется способность белков прочно связывать значительное количество влаги.

5*


Раздел 1. Теоретические основы

Гидрофильность отдельных белков зависит от их строения. Расположенные на поверхности белковой глобулы гидрофильные группы (аминные, карбоксильные и др.) притягивают молекулы воды, строго ориентируя их на поверхности. В изоэлектрической точке (когда заряд белковой молекулы близок к нулю) способность белка адсорбировать воду наименьшая. Сдвиг рН в ту или иную сторону от изоэлектрической точки приводит к диссоциации основных или кислотных групп белка, увеличению заряда белковых молекул и улучшению гидратации белка. Окружающая белковые глобулы гидратная (водная) оболочка придает устойчивость растворам белка, мешает отдельным частицам слипаться и выпадать в осадок.

В растворах с малой концентрацией белка (например, молоко) белки полностью гидратированы и связывать воду не могут. В концентрированных растворах белков при добавлении воды происходит дополнительная гидратация. Способность белков к дополнительной гидратации имеет в технологии пищи большое значение. От нее зависят сочность готовых изделий, способность полуфабрикатов из мяса, птицы, рыбы удерживать влагу, реологические свойства теста и т. д.

Примерами гидратации в кулинарной практике являются: приготовление омлетов, котлетной массы из продуктов животного происхождения, различных видов теста, набухание белков круп, бобовых, макаронных изделий и т. д.

Дегидратацией называется потеря белками связанной воды при сушке, замораживании и размораживании мяса и рыбы, при тепловой обработке полуфабрикатов и т. д. От степени дегидратации зависят такие важные показатели, как влажность готовых изделий и их выход.

Денатурация белков. Это сложный процесс, при котором под влиянием внешних факторов (температуры, механического воздействия, действия кислот, щелочей, ультразвука и др.) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы, т. е. нативной (естественной) пространственной структуры. Первичная структура, а следовательно, и химический состав белка не меняются.

При кулинарной обработке денатурацию белков чаще всего вызывает нагревание. Процесс этот в глобулярных и фибриллярных белках происходит по-разному. В глобулярных белках при нагревании усиливается тепловое движение полипептидных цепей внутри глобулы; водородные связи, которые удерживали их в определенном положении, разрываются и полипептидная цепь развертывается, а затем сворачивается по-

Глава 4. Процессы, формирующие качество кулинарной продукции 57

новому. При этом полярные (заряженные) гидрофильные группы, расположенные на поверхности глобулы и обеспечивающие ее заряд и устойчивость, перемещаются внутрь глобулы, а на поверхность ее выходят реакционноспособные гидрофобные группы (дисульфидные, сульфгидрильные и др.), не способные удерживать воду.

Денатурация сопровождается изменениями важнейших свойств белка:

* потерей индивидуальных свойств (например, изменение окраски мяса при его нагревании вследствие денатурации миоглобина);

* потерей биологической активности (например, в картофеле, грибах, яблоках и ряде других растительных продуктов содержатся ферменты, вызывающие их потемнение, при денатурации белки-ферменты теряют активность);

* повышением атакуемости пищеварительными ферментами (как правило, подвергнутые тепловой обработке продукты, содержащие белки, перевариваются полнее и легче);

* потерей способности к гидратации (-растворению, набуханию);

* потерей устойчивости белковых глобул, которая сопровождается их агрегированием (свертыванием, или коагуляцией, белка).

Агрегирование — это взаимодействие денатурированных молекул белка, которое сопровождается образованием более крупных частиц. Внешне это выражается по-разному в зависимости от концентрации и коллоидного состояния белков в растворе. Так, в малоконцентрированных растворах (до 1%) свернувшийся белок образует хлопья (пена на поверхности бульонов). В более концентрированных белковых растворах (например, белки яиц) при денатурации образуется сплошной гель, удерживающий всю воду, содержащуюся в коллоидной системе. Белки, представляющее собой более или менее обводненные гели (мышечные белки мяса, птицы, рыбы; белки круп, бобовых, муки после гидратации и др.), при денатурации уплотняются, при этом происходит их дегидратация с отделением жидкости в окружающую среду. Белковый гель, подвергнутый нагреванию, как правило, имеет меньшие объем, массу, большие механическую прочность и упругость по сравнению с исходным гелем нативных (натуральных) белков.

Скорость агрегирования золей белка зависит от рН среды. Менее устойчивы белки вблизи изоэлектрической точки. Для улучшения качества блюд и кулинарных изделий широко ис-


Раздел 1. Теоретические основы

пользуют направленное изменение реакции среды. Так, при мариновании мяса, птицы, рыбы перед жаркой; добавлении лимонной кислоты или белого сухого вина при припускании рыбы, цыплят; использовании томатного пюре при тушении мяса и др. создают кислую среду со значениями рН значительно ниже изоэлектрической точки белков продукта. Благодаря меньшей дегидратации белков изделия получаются более сочными.

Фибриллярные белки денатурируют иначе: связи, которые удерживали спирали их полипептидных цепей, разрываются, и фибрилла (нить) белка сокращается в длину. Так денатурируют белки соединительной ткани мяса и рыбы.

Деструкция белков. При длительной тепловой обработке белки подвергаются более глубоким изменениям, связанным с разрушением их макромолекул. На первом этапе изменений от белковых молекул могут отщепляться функциональные группы с образованием таких летучих соединений, как аммиак,се-роводород, фосфористый водород, углекислый газ и др. Накапливаясь в продукте, они участвуют в образовании вкуса и аромата готовой продукции. При дальнейшей гидротермической обработке белки гидролизуются, при этом первичная (пептидная) связь разрывается с образованием растворимых азотистых веществ небелкового характера (например, переход коллагена в глютин).

Деструкция белков может быть целенаправленным приемом кулинарной обработки, способствующим интенсификации технологического процесса (использование ферментных препаратов для размягчения мяса, ослабления клейковины теста, получение белковых гидролизатов и др.).

Пенообразование. Белки в качестве пенообразователей широко используют при производстве кондитерских изделий (тесто бисквитное, белково-взбивное), взбивании сливок, сме-, таны, яиц и др.). Устойчивость пены зависит от природы белка, его концентрации, а также температуры.

Важны и другие технологические свойства белков. Так, их используют в качестве эмульгаторов при производстве бел-ково-жировых эмульсий (см. разд. I, гл. 2), как наполнители для различных напитков. Напитки, обогащенные белковыми гид-ролизатами (например, соевыми), обладают низкой калорийностью и могут храниться длительное время даже при высокой температуре без добавления консервантов. Белки способны связывать вкусовые и ароматические вещества. Этот процесс обусловливается как химической природой этих веществ, так и

Глава 4. Процессы, формирующие качество кулинарной продукции 59

поверхностными свойствами белковой молекулы, факторами окружающей среды.

При длительном хранении происходит "старение" белков, при этом снижается их способность к гидратации, удлиняются сроки тепловой обработки, затрудняется разваривание продукта (например, варка бобовых после длительного хранения).

При нагревании с восстанавливающими сахарами белки образуют меланоидтны (см. с. 61).

Изменения углеводов

В пищевых продуктах содержатся моносахариды (глюкоза, фруктоза), олигосахариды (ди- и трисахароза — мальтоза, лактоза и др.), полисахариды (крахмал, целлюлоза, гемицел-люлозы, гликоген) и близкие к углеводам пектиновые вещества.

Изменения Сахаров. В процессе изготовления различных кулинарных изделий часть содержащихся в них Сахаров расщепляется. В одних случаях расщепление ограничивается гидролизом дисахаридов, в других — происходит более глубокий распад Сахаров (процессы брожения, карамелизации, мелано-идинообразрвания).

Гидролиз дисахаридов. Дисахариды гидролизуются под действием как кислот, так и ферментов.

Кислотный гидролиз имеет место в таких технологических процессах, как варка плодов и ягод в растворах сахара различной концентрации (приготовление компотов, киселей, фрукто-во-ягодных начинок), запекание яблок, уваривание сахара с какой-либо пищевой кислотой (приготовление помадок). Сахароза в водных растворах под влиянием кислот присоединяет молекулу воды и расщепляется на равные количества глюкозы и фруктозы (инверсия сахарозы). Образующийся инверт-ный сахар хорошо усваивается организмом, обладает высокой гигроскопичностью и способностью задерживать кристаллизацию сахарозы. Если сладость сахарозы принять за 100%, то для глюкозы этот показатель составит 74%, а для фруктозы — 173%. Поэтому следствием инверсии является некоторое повышение сладости сиропа или готовых изделий.

Степень инверсии сахарозы зависит от вида кислоты, ее концентрации, продолжительности нагрева. Органические кислоты по инверсионной способности можно расположить в следующем порядке: щавелевая, лимонная, яблочная и уксусная.


Раздел 1. Теоретические основы

В кулинарной практике, как правило, используют уксусную и лимонную кислоты, первая слабее щавелевой кислоты в 50, вторая — в 11 раз.

Ферментативному гидролизу подвергаются сахароза и мальтоза при брожении и в начальный период выпечки дрожжевого теста. Сахароза под воздействием фермента сахаразы расщепляется на глюкозу и фруктозу, а мальтоза под действием фермента мальтазы — до двух молекул глюкозы. Оба фермента содержатся в дрожжах. Сахароза добавляется в тесто в соответствии с его рецептурой, мальтоза образуется в процессе гидролиза из крахмала. Накапливающиеся моносахариды участвуют в разрыхлении дрожжевого теста.

Брожение. Глубокому распаду подвергаются сахара при брожении дрожжевого теста. Под действием ферментов дрожжей сахара превращаются в спирт и углекислый газ, последний разрыхляет тесто. Кроме того, под действием молочнокислых бактерий сахара в тесте превращаются в молочную кислоту, которая задерживает развитие гнилостных процессов и способствует набуханию белков клейковины.

Подробнее эти процессы рассмотрены в разд. IV.

Карамелизация. Глубокий распад Сахаров при нагревании их выше температуры плавления с образованием темноокра-шенных продуктов называется карамелизацией. Температура плавления фруктозы 98—102°С, глюкозы — 145—149, сахарозы — 160—185°С. Происходящие при этом процессы сложны и еще недостаточно изучены. Они в значительной степени зависят от вида и концентрации сахара, условий нагревания, рН среды и других факторов.

В кулинарной практике чаще всего приходится иметь дело с карамелизацией сахарозы. При нагревании ее в ходе технологического процесса в слабокислой или нейтральной среде происходит частичная инверсия с образованием глюкозы и фруктозы, которые претерпевают дальнейшие превращения. Например, от молекулы глюкозы может отщепиться одна или две молекулы воды (дегидратация), а образовавшиеся продукты (ангидриды) соединиться друг с другом или с молекулой сахарозы. Последующее тепловое воздействие может привести к выделению третьей молекулы воды с образованием оксиметил-фурфурола, который при дальнейшем нагревании может распадаться с образованием муравьиной и левулиновой кислот или образовывать окрашенные соединения. Окрашенные соединения представляют собой смесь веществ различной степени по-

Глава 4. Процессы, формирующие качество кулинарной продукции 61

лимеризации: карамелана (вещество светло-соломенного цвета, растворяющееся в холодной воде), карамелена (вещество ярко-коричневого цвета с рубиновым оттенком, растворяющееся и в холодной, и в кипящей воде), карамелина (вещество темно-коричневого цвета, растворяющееся только в кипящей воде) и др., превращающуюся в некристаллизующуюся массу (жженку). Жженку используют в качестве пищевого красителя.

Карамелизация Сахаров происходит при подпекании лука и моркови для бульонов, при запекании яблок, при приготовлении многих кондитерских изделий и сладких блюд.

Меланоидинообразование. Подмеланоидинообразо-в а ни ем понимают взаимодействие восстанавливающих са-харов (моносахариды и восстанавливающие дисахариды, как содержащиеся в самом продукте, так и образующиеся при гидролизе более сложных углеводов) с аминокислотами, пептидами и белками, приводящее к образованию темноокрашенных продуктов — меланоидинов (от гр. melanos — темный). Этот процесс называют также реакцией Майара, по имени ученого, который в 1912 г. впервые его описал.

Реакция меланоидинообразования имеет большое значение в кулинарной практике. Ее положительная роль состоит в следующем: она обусловливает образование аппетитной корочки на жареных, запеченных блюдах из мяса, птицы, рыбы, выпечных изделиях из теста; побочные продукты этой реакции участвуют в образовании вкуса и аромата готовых блюд. Отрицательная роль реакции меланоидинообразования заключается в том, что она вызывает потемнение фритюрного жира, фруктовых пюре, некоторых овощей; снижает биологическую ценность белков, поскольку связываются аминокислоты.

В реакцию меланоидинообразования особенно легко вступают такие аминокислоты, как лизин, метионин, которых чаще всего недостает в растительных белках. После соединения с сахарами эти кислоты становятся недоступными для пищеварительных ферментов и не всасываются в желудочно-кишечном тракте. В кулинарной практике часто нагревают молоко с крупам, овощами. В результате взаимодействия лактозы и лизина биологическая ценность белков готовых блюд снижается.

Изменения крахмала. Строение крахмального зерна и свойства крахмальных полисахаридов. В значительных ко-


Раздел 1. Теоретические основы

личествах крахмал содержится в крупе, бобовых, муке, макаронных изделиях, картофеле. Находится он в клетках растительных продуктов в виде крахмальных зерен разной величины и формы. Они представляют собой сложные биологические образования, в состав которых входят полисахариды (амилоза и амилопектин) и небольшие количества сопутствующих им веществ (кислоты фосфорная, кремневая и др., минеральные элементы и т. д.). Крахмальное зерно имеет слоистое строение (рис. 1.3). Слои состоят из частиц крахмальных полисахаридов, радиально расположенных и образующих зачатки кристаллической структуры. Благодаря этому крахмальное зерно обладает анизотропностью (двойным лучепреломлением).

Образующие зерно слои неоднородны: устойчивые к нагреванию чередуются с менее устойчивыми, более плотные — с менее плотными. Наружный слой более плотный, чем внутренние, и образует оболочку зерна. Все зерно пронизано порами и благодаря этому способно поглощать влагу. Большинство видов крахмала содержит 15—20% амилозы и 80—85% амилопектина. Однако крахмал восковидных сортов кукурузы, риса и ячменя состоит в основном из амилопектина, а крахмал некоторых сортов кукурузы и гороха содержит 50—75% амилозы.

Молекулы крахмальных полисахаридов состоят из остатков глюкозы, соединенных друг с другом в длинные цепи. В молекулы амилозы таких остатков входит в среднем около 1000. Чем длиннее цепи амилозы, тем она хуже растворяется. В молекулы амилопектина остатков глюкозы входит значительно больше. Кроме того, в молекулах амилозы цепи прямые, а у амилопектина они ветвятся. В крахмальном зерне молекулы полисахаридов изогнуты и расположены слоями.

Широкое использование крахмала в кулинарной практике обусловлено комплексом характерных для него технологических свойств: набуханием и клейстеризацией, гидролизом, декстринизацией (термическая деструкция).

Набухание и клейстеризация крахмала. Набухание — одно из важнейших свойств крахмала, которое влияет на консистенцию, форму, объем и выход готовых изделий.

При нагревании крахмала с водой (крахмальной суспензии) до температуры 50—55°С крахмальные зерна медленно поглощают воду (до 50% своей массы) и ограниченно набухают. При этом повышения вязкости суспензии не наблюдается. Набухание это обратимо: после охлаждения и сушки крахмал практически не изменяется.

Глава 4. Процессы, формирующие качество кулинарной продукции 63

\

Рис. 1.3. Строение крахмального зерна:

1 — строение амилозы; 2 — строение амилопектина; 3 — крахмальные зерна сырого картофеля; 4 — крахмальные зерна вареного картофеля; 5 — крахмальные зерна в сыром тесте; 6 — крахмальные зерна после выпечки

При нагревании от 55 до 80°С крахмальные зерна поглощают большое количество воды, увеличиваются в объеме в несколько раз, теряют кристаллическое строение, а следовательно, анизотропность. Крахмальная суспензия превращается в клейстер. Процесс его образования называется клейстери-


Раздел 1. Теоретические основы

зацией. Таким образом, клейстеризация — это разрушение нативной структуры крахмального зерна, сопровождаемое набуханием.

Температура, при которой анизотропность большинства зерен разрушена, называется температурой клейсте-р и з а ц и и. Температура клейстеризации разных видов крахмала неодинакова. Так, клейстеризация картофельного крахмала наступает при 55—65°С, пшеничного — при 60—80, кукурузного — при 60—71°, рисового — при 70—80°С.

Процесс клейстеризации крахмальных зерен идет поэтапно:

* при 55—70°С зерна увеличиваются в объеме в несколько раз, теряют оптическую анизотропность, но еще сохраняют слоистое строение; в центре крахмального зерна образуется полость ("пузырек"); взвесь зерен в воде превращается в клейстер — малоконцентрированный золь амилозы, в котором распределены набухшие зерна (первая стадия клейстеризации);

* при нагревании выше 70°С в присутствии значительного количества воды крахмальные зерна увеличиваются в объеме в десятки раз, слоистая структура исчезает, значительно повышается вязкость системы (вторая стадия клейстеризации); на этой стадии увеличивается количество растворимой амилозы; раствор ее частично остается в зерне, а частично диффундирует в окружающую среду.

При длительном нагревании с избытком воды крахмальные пузырьки лопаются, и вязкость клейстера снижается. Примером этого в кулинарной практике является разжижение киселя в результате чрезмерного нагрева.

Крахмал клубневых растений (картофель, топинамбур) дает прозрачные клейстеры желеобразной консистенции, а зерновых (кукуруза, рис, пшеница и др.) — непрозрачные, молочно-белые, пастообразной консистенции.

Консистенция клейстера зависит от количества крахмала: при содержании его от 2 до 5% клейстер получается жидким (жидкие кисели, соусы, супы-пюре); при 6—8% — густым (густые кисели). Еще более густой клейстер образуется внутри клеток картофеля, в кашах, блюдах из макаронных изделий.

На вязкость клейстера влияет не только концентрация крахмала, но и присутствие различных пищевых веществ (сахаров, минеральных элементов, кислот, белков и др.). Так, сахароза повышает вязкость системы, соль снижает, белки оказывают стабилизирующее действие на крахмальные клейстеры.

При охлаждении крахмалосодержащих продуктов количество растворимой амилозы в них снижается в результате рет-

Глава 4. Процессы, формирующие качество кулинарной продукции 65

роградации (выпадение в осадок). При этом происходит старение крахмальных студней (синерезис), и изделия черствеют. Скорость старения зависит от вида изделий, их влажности и температуры хранения. Чем выше влажность блюда, кулинарного изделия, тем интенсивнее снижается в нем количество водорастворимых веществ. Наиболее быстро старение протекает в пшенной каше, медленнее — в манной и гречневой. Повышение температуры тормозит процесс ретроградации, поэтому блюда из крупы и макаронных изделий, которые хранятся на мармитах с температурой 70—80°С, имеют хорошие органолептические показатели в течение 4 ч.

Гидролиз крахмала. Крахмальные полисахариды способны распадаться до молекул составляющих их Сахаров. Процесс этот называется гидролизом, так как идет с присоединением воды. Различают ферментативный и кислотный гидролиз.

Ферменты, расщепляющие крахмал, носят название амилаз. Существуют два вида их:

ос-амилаза, которая вызывает частичный распад цепей крахмальных полисахаридов с образованием низкомолекулярных соединений — декстринов; при продолжительном гидролизе возможно образование мальтозы и глюкозы;

р-амилаза, которая расщепляет крахмал до мальтозы.

Ферментативный гидролиз крахмала происходит при изготовлении дрожжевого теста и выпечке изделий из него, варке картофеля и др. В пшеничной муке обычно содержится р-амилаза; мальтоза, образующаяся под ее влиянием, является питательной средой для дрожжей. В муке из проросшего зерна преобладает а-амилаза, образующиеся под ее воздействием декстрины придают изделиям липкость, неприятный вкус.

Степень гидролиза крахмала под действием [3-амилазы увеличивается с повышением температуры теста при замесе и в начальный период выпечки, с увеличением продолжительности замеса. Кроме того, она зависит от крупности помола муки и степени повреждения крахмальных зерен. Чем больше поврежденных зерен (чем тоньше помол муки), тем быстрее протекает гидролиз (или ферментативная деструкция) крахмала.

В картофеле также содержится р-амилаза, превращающая крахмал в мальтозу. Мальтоза расходуется на дыхание клубней. При температуре, близкой к 0°С, дыхание замедляется, мальтоза накапливается, и картофель становится сладким (подмороженный картофель). При использовании подмороженный картофель рекомендуется выдержать некоторое вре-


Раздел 1. Теоретические основы

мя при комнатной температуре. В этом случае дыхание клубней усиливается, сладковатость их уменьшается. Активность Р-амилазы возрастает интервале от 35 до 40°С, при температуре 65°С фермент разрушается. Поэтому, если картофель перед варкой залить холодной водой, то пока клубни прогреются, значительная часть крахмала успеет превратиться в мальтозу, она перейдет в отвар и потери питательных веществ увеличатся. Если же картофель залить кипящей водой, то р-амилаза инактивируется и потери питательных веществ будут меньше.

Кислотный гидролиз крахмала может происходить при нагревании его в присутствии кислот и воды, при этом образуется глюкоза. Кислотный гидролиз имеет место при варке красных соусов, при варке киселей и длительном хранении их в горячем состоянии.

Декстринизация (термическая деструкция крахмала. Декстринизация — это разрушение структуры крахмального зерна при сухом нагреве его свыше 120°С с образованием растворимых в воде декстринов и некоторого количества продуктов глубокого распада углеводов (углекислого газа, окиси углерода и др.). Декстрины имеют окраску от светло-желтой до темно-коричневой. Разные виды крахмала обладают различной устойчивостью к сухому нагреву. Так, при нагревании до 180°С разрушается до 90% зерен картофельного крахмала, до 14% — пшеничного, до 10% — кукурузного. Чем выше температура, тем большее количество крахмальных полисахаридов превращается в декстрины. В результате декстрини-зации снижается способность крахмала к набуханию в горячей воде и клейстеризации. Этим объясняется более густая консистенция соусов на белой пассеровке (температура пассерования муки 120°С) по сравнению с соусами на красной пассеровке (температура пассерования муки 150°С) при одном и том же расходе муки.

В кулинарной практике Декстринизация крахмала происходит не только при пассеровании муки для соусов, но также при обжаривании гречневой крупы, подсушивании риса, вермишели, лапши перед варкой, в поверхностных слоях картофеля при жарке в корочке изделий из теста и др.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.016 сек.)