|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Коды хэмминга
Это линейные блочные коды с параметрами , где - положительное целое число, - число проверочных символов. Для задания кодов Хэмминга обычно используется проверочная матрица. Ее столбцами являются все ненулевые двоичные числа длиной . Они обладают кодовым расстоянием и способны исправлять только одну или обнаруживать две ошибки. Примеры полных кодов Хэмминга: (7, 4), (15, 11), (31, 26), (63, 57). Пример 3.5: Рассмотрим код Хэмминга (7, 4). Проверочная матрица: Порождающая матрица: . Модификациями кодов Хэмминга являются укороченные и удлиненные коды Хэмминга. Чтобы получить проверочную матрицу укороченного кода Хэмминга, необходимо в проверочной матрице полного кода исключить любые Т столбцов, относящиеся к информационным разрядам, где Т - параметр укорочения. Удлиненные коды Хэмминга получаются путем введения дополнительной проверки на четность всех символов кодового слова. Коды Хэмминга обладают очень слабой корректирующей способностью и отдельно практически не используются. Очень хорошие результаты позволяет получить применение данных кодов в составе каскадных схем кодирования. Каскадные коды состоят из двух или более кодов: кодовые слова одного кода являются информационными символами для кода следующей ступени. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |