|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Мажоритарное декодирование
Основано на том, что каждый информационный символ можно выразить через другие символы кодового слова с помощью линейных соотношений. Окончательное решение о значении символа принимается по мажоритарному принципу (по большинству) результатов таких проверок. Существует три способа построения систем проверочных уравнений для декодирования символа: - системы с разделенными проверками – символ, относительно которого разделяется система, входит во все уравнения. Любой другой символ входит не более, чем в одно уравнение. Для коррекции ошибок необходимо уравнений в системе; - системы с -связанными проверками – символ, относительно которого разрешается система, входит во все уравнения. Любой другой символ входит не более, чем в уравнений. Для коррекции ошибок необходимо уравнений в системе; - системы с квазиразделенными проверками – система разделима относительно некоторой суммы символов. На первом этапе она разрешается относительно суммы символов, а на втором – относительно конкретного символа. Рисунок 5.2 – Структурная схема мажоритарного декодера. На рисунке: 1…k – устройства, реализующие проверки для соответствующей системы; МЭ – мажоритарный элемент, принимающий решение о значении символа по большинству результатов проверок. Пример 5.1: Код (8,4) задан матрицей: . Система уравнений по матрице Н: Система проверочных уравнений для : Система проверочных уравнений для : Система проверочных уравнений для : Система проверочных уравнений для : Пусть .
Результат декодирования: . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |